6 resultados para magnetic property
em Instituto Politécnico do Porto, Portugal
Residential property loans and performance during property price booms: evidence from European banks
Resumo:
Understanding the performance of banks is of the utmost relevance, because of the impact of this sector on economic growth and financial stability. Of all the different assets that make up a bank portfolio, the residential mortgage loans constitute one of its main. Using the dynamic panel data method, we analyse the influence of residential mortgage loans on bank profitability and risk, using a sample of 555 banks in the European Union (EU-15), over the period from 1995 to 2008. We find that banks with larger weights of residential mortgage loans show lower credit risk in good times. This result explains why banks rush to lend on property during booms due to the positive effects it has on credit risk. The results show further that credit risk and profitability are lower during the upturn in the residential property price cycle. The results also reveal the existence of a non-linear relationship (U-shaped marginal effect), as a function of bank’s risk, between profitability and the residential mortgage loans exposure. For those banks that have high credit risk, a large exposure of residential mortgage loans is associated with higher risk-adjusted profitability, through lower risk. For banks with a moderate/low credit risk, the effects of higher residential mortgage loan exposure on its risk-adjusted profitability are also positive or marginally positive.
Resumo:
Understanding the performance of banks is of the u tmost importance due to the impact the sector may have on economic growth and financial stability. Residential mortgage loans constitute a large proportion of the portfolio of many banks and are one of the key assets in the determination of performance. Using a dynamic panel model , we analyse the impact of res idential mortgage loans on bank profitability and risk , based on a sample of 555 banks in the European Union ( EU - 15 ) , over the period from 1995 to 2008. We find that banks with larger weight s in residential mortgage loans display lower credit risk in good market conditions . This result may explain why banks rush to lend on property during b ooms due to the positive effect it has on credit risk . The results also show that credit risk and profitability are lower during the upturn in the residential property cy cle. Furthermore, t he results reveal the existence of a non - linear relationship ( U - shaped marginal effect), as a function of bank’s risk, between profitability and residential mortgage exposure . For those banks that have high er credit risk, a large exposur e to residential loans is associated with increased risk - adjusted profitability, through a reduction in risk. For banks with a moderate to low credit risk, the impact of higher exposure are also positive on risk - adjusted profitability.
Resumo:
Magnetic resonance (MR) imaging has been used to analyse and evaluate the vocal tract shape through different techniques and with promising results in several fields. Our purpose is to demonstrate the relevance of MR and image processing for the vocal tract study. The extraction of contours of the air cavities allowed the set - up of a number of 3D reconstruction image stacks by means of the combination of orthogonally oriented sets of slices for e ach articulatory gesture, as a new approach to solve the expected spatial under sampling of the imaging process. In result these models give improved information for the visualization of morphologic and anatomical aspects and are useful for partial measure ments of the vocal tract shape in different situations. Potential use can be found in Medical and therapeutic applications as well as in acoustic articulatory speech modelling.
Resumo:
The first and second authors would like to thank the support of the PhD grants with references SFRH/BD/28817/2006 and SFRH/PROTEC/49517/2009, respectively, from Fundação para a Ciência e Tecnol ogia (FCT). This work was partially done in the scope of the project “Methodologies to Analyze Organs from Complex Medical Images – Applications to Fema le Pelvic Cavity”, wi th reference PTDC/EEA- CRO/103320/2008, financially supported by FCT.
Resumo:
This paper is a contribution for the assessment and comparison of magnet properties based on magnetic field characteristics particularly concerning the magnetic induction uniformity in the air gaps. For this aim, a solver was developed and implemented to determine the magnetic field of a magnetic core to be used in Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry. The electromagnetic field computation is based on a 2D finite-element method (FEM) using both the scalar and the vector potential formulation. Results for the magnetic field lines and the magnetic induction vector in the air gap are presented. The target magnetic induction is 0.2 T, which is a typical requirement of the FFC NMR technique, which can be achieved with a magnetic core based on permanent magnets or coils. In addition, this application requires high magnetic induction uniformity. To achieve this goal, a solution including superconducting pieces is analyzed. Results are compared with a different FEM program.
Resumo:
Potentiometric detection with homemade polymeric membrane microelectrodes was coupled to a magnetic sandwich immunoassay for Salmonella typhimurium determination. Cadmium and sodium ion selective electrodes were used respectively as indicator and pseudo-reference electrodes and were prepared in pipette tips to allow potentiometric measurements in microliter sample volumes. In the proposed method, the concentration of S. typhimurium was proportional to the amount of cadmium released upon dissolution of a CdS nanoparticle labeled to the secondary detection antibody. The limit of detection was 2 cells per 100 μL. The immunomagnetic assay with potentiometric detection is suitable for sensitive and rapid (average total time per assay of 75 minutes) detection of S. typhimurium in milk samples. The proposed method is easy to perform, safe, sensitive, and low cost and has potential for in situ analysis.