20 resultados para machine theory

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper detail some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper is presented a Game Theory based methodology to allocate transmission costs, considering cooperation and competition between producers. As original contribution, it finds the degree of participation on the additional costs according to the demand behavior. A comparative study was carried out between the obtained results using Nucleolus balance and Shapley Value, with other techniques such as Averages Allocation method and the Generalized Generation Distribution Factors method (GGDF). As example, a six nodes network was used for the simulations. The results demonstrate the ability to find adequate solutions on open access environment to the networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimization techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper details some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study based on real data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper introduces an approach to solve the problem of generating a sequence of jobs that minimizes the total weighted tardiness for a set of jobs to be processed in a single machine. An Ant Colony System based algorithm is validated with benchmark problems available in the OR library. The obtained results were compared with the best available results and were found to be nearer to the optimal. The obtained computational results allowed concluding on their efficiency and effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: A major focus of data mining process - especially machine learning researches - is to automatically learn to recognize complex patterns and help to take the adequate decisions strictly based on the acquired data. Since imaging techniques like MPI – Myocardial Perfusion Imaging on Nuclear Cardiology, can implicate a huge part of the daily workflow and generate gigabytes of data, there could be advantages on Computerized Analysis of data over Human Analysis: shorter time, homogeneity and consistency, automatic recording of analysis results, relatively inexpensive, etc.Objectives: The aim of this study relates with the evaluation of the efficacy of this methodology on the evaluation of MPI Stress studies and the process of decision taking concerning the continuation – or not – of the evaluation of each patient. It has been pursued has an objective to automatically classify a patient test in one of three groups: “Positive”, “Negative” and “Indeterminate”. “Positive” would directly follow to the Rest test part of the exam, the “Negative” would be directly exempted from continuation and only the “Indeterminate” group would deserve the clinician analysis, so allowing economy of clinician’s effort, increasing workflow fluidity at the technologist’s level and probably sparing time to patients. Methods: WEKA v3.6.2 open source software was used to make a comparative analysis of three WEKA algorithms (“OneR”, “J48” and “Naïve Bayes”) - on a retrospective study using the comparison with correspondent clinical results as reference, signed by nuclear cardiologist experts - on “SPECT Heart Dataset”, available on University of California – Irvine, at the Machine Learning Repository. For evaluation purposes, criteria as “Precision”, “Incorrectly Classified Instances” and “Receiver Operating Characteristics (ROC) Areas” were considered. Results: The interpretation of the data suggests that the Naïve Bayes algorithm has the best performance among the three previously selected algorithms. Conclusions: It is believed - and apparently supported by the findings - that machine learning algorithms could significantly assist, at an intermediary level, on the analysis of scintigraphic data obtained on MPI, namely after Stress acquisition, so eventually increasing efficiency of the entire system and potentially easing both roles of Technologists and Nuclear Cardiologists. In the actual continuation of this study, it is planned to use more patient information and significantly increase the population under study, in order to allow improving system accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este artigo aborda a natureza da motivação na sua relação com a aprendizagem musical. Um dos objectivos principais é problematizar a questão das diferenças no sucesso da aprendizagem musical quando nos encontramos perante indivíduos com níveis aparentemente semelhantes de capacidade e potencial musicais. Começa por apresentar um conjunto de modelos teóricos que oferecem uma visão acerca das razões que podem explicar as variações e mudanças na motivação. Refere-se investigação recente que sugere que os processos motivacionais não são pré-determinados mas podem ser aprendidos e que os indivíduos, para atingir níveis elevados de sucesso, necessitam de uma focagem no processo por oposição a uma focagem no produto. São introduzidos e explorados processos cognitivos fundamentais relacionados com a aprendizagem musical (por exemplo, comportamento au to-regulado, papel da motivação intrínseca e extrínseca) . Como conclusão, sugerem-se algumas práticas específicas para que os professores possam reflectir acerca da melhor forma de encorajar e aumentar a motivação dos seus alunos para aprender música.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In almost all industrialized countries, the energy sector has suffered a severe restructuring that originated a greater complexity in market players’ interactions. The complexity that these changes brought made way for the creation of decision support tools that facilitate the study and understanding of these markets. MASCEM – “Multiagent Simulator for Competitive Electricity Markets” arose in this context providing a framework for evaluating new rules, new behaviour, and new participants in deregulated electricity markets. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. ALBidS is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This tool’s goal is to force the thinker to move outside his habitual thinking style. It was developed to be used mainly at meetings in order to “run better meetings, make faster decisions”. This dissertation presents a study about the applicability of the Six Thinking Hats technique in Decision Support Systems, particularly with the multiagent paradigm like the MASCEM simulator. As such this work’s proposal is of a new agent, a meta-learner based on STH technique that organizes several different ALBidS’ strategies and combines the distinct answers into a single one that, expectedly, out-performs any of them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Timeliness guarantee is an important feature of the recently standardized IEEE 802.15.4 protocol, turning it quite appealing for Wireless Sensor Network (WSN) applications under timing constraints. When operating in beacon-enabled mode, this protocol allows nodes with real-time requirements to allocate Guaranteed Time Slots (GTS) in the contention-free period. The protocol natively supports explicit GTS allocation, i.e. a node allocates a number of time slots in each superframe for exclusive use. The limitation of this explicit GTS allocation is that GTS resources may quickly disappear, since a maximum of seven GTSs can be allocated in each superframe, preventing other nodes to benefit from guaranteed service. Moreover, the GTS may be underutilized, resulting in wasted bandwidth. To overcome these limitations, this paper proposes i-GAME, an implicit GTS Allocation Mechanism in beacon-enabled IEEE 802.15.4 networks. The allocation is based on implicit GTS allocation requests, taking into account the traffic specifications and the delay requirements of the flows. The i-GAME approach enables the use of one GTS by multiple nodes, still guaranteeing that all their (delay, bandwidth) requirements are satisfied. For that purpose, we propose an admission control algorithm that enables to decide whether to accept a new GTS allocation request or not, based not only on the remaining time slots, but also on the traffic specifications of the flows, their delay requirements and the available bandwidth resources. We show that our approach improves the bandwidth utilization as compared to the native explicit allocation mechanism defined in the IEEE 802.15.4 standard. We also present some practical considerations for the implementation of i-GAME, ensuring backward compatibility with the IEEE 801.5.4 standard with only minor add-ons. Finally, an experimental evaluation on a real system that validates our theoretical analysis and demonstrates the implementation of i-GAME is also presented

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for teams of mobile robots, that must transport a large object and simultaneously avoid collisions with (either static or dynamic) obstacles. Here we demonstrate in simulations and implementations in real robots that it is possible to simplify the architectures presented in previous work and to extend the approach to teams of n robots. The robots have no prior knowledge of the environment. The motion of each robot is controlled by a time series of asymptotical stable states. The attractor dynamics permits the integration of information from various sources in a graded manner. As a result, the robots show a strikingly smooth an stable team behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineering Education includes not only teaching theoretical fundamental concepts but also its verification during practical lessons in laboratories. The usual strategies to carry out this action are frequently based on Problem Based Learning, starting from a given state and proceeding forward to a target state. The possibility or the effectiveness of this procedure depends on previous states and if the present state was caused or resulted from earlier ones. This often happens in engineering education when the achieved results do not match the desired ones, e.g. when programming code is being developed or when the cause of the wrong behavior of an electronic circuit is being identified. It is thus important to also prepare students to proceed in the reverse way, i.e. given a start state generate the explanation or even the principles that underlie it. Later on, this sort of skills will be important. For instance, to a doctor making a patient?s story or to an engineer discovering the source of a malfunction. This learning methodology presents pedagogical advantages besides the enhanced preparation of students to their future work. The work presented on his document describes an automation project developed by a group of students in an engineering polytechnic school laboratory. The main objective was to improve the performance of a Braille machine. However, in a scenario of Reverse Problem-Based learning, students had first to discover and characterize the entire machine's function before being allowed (and being able) to propose a solution for the existing problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sendo uma forma natural de interação homem-máquina, o reconhecimento de gestos implica uma forte componente de investigação em áreas como a visão por computador e a aprendizagem computacional. O reconhecimento gestual é uma área com aplicações muito diversas, fornecendo aos utilizadores uma forma mais natural e mais simples de comunicar com sistemas baseados em computador, sem a necessidade de utilização de dispositivos extras. Assim, o objectivo principal da investigação na área de reconhecimento de gestos aplicada à interacção homemmáquina é o da criação de sistemas, que possam identificar gestos específicos e usálos para transmitir informações ou para controlar dispositivos. Para isso as interfaces baseados em visão para o reconhecimento de gestos, necessitam de detectar a mão de forma rápida e robusta e de serem capazes de efetuar o reconhecimento de gestos em tempo real. Hoje em dia, os sistemas de reconhecimento de gestos baseados em visão são capazes de trabalhar com soluções específicas, construídos para resolver um determinado problema e configurados para trabalhar de uma forma particular. Este projeto de investigação estudou e implementou soluções, suficientemente genéricas, com o recurso a algoritmos de aprendizagem computacional, permitindo a sua aplicação num conjunto alargado de sistemas de interface homem-máquina, para reconhecimento de gestos em tempo real. A solução proposta, Gesture Learning Module Architecture (GeLMA), permite de forma simples definir um conjunto de comandos que pode ser baseado em gestos estáticos e dinâmicos e que pode ser facilmente integrado e configurado para ser utilizado numa série de aplicações. É um sistema de baixo custo e fácil de treinar e usar, e uma vez que é construído unicamente com bibliotecas de código. As experiências realizadas permitiram mostrar que o sistema atingiu uma precisão de 99,2% em termos de reconhecimento de gestos estáticos e uma precisão média de 93,7% em termos de reconhecimento de gestos dinâmicos. Para validar a solução proposta, foram implementados dois sistemas completos. O primeiro é um sistema em tempo real capaz de ajudar um árbitro a arbitrar um jogo de futebol robótico. A solução proposta combina um sistema de reconhecimento de gestos baseada em visão com a definição de uma linguagem formal, o CommLang Referee, à qual demos a designação de Referee Command Language Interface System (ReCLIS). O sistema identifica os comandos baseados num conjunto de gestos estáticos e dinâmicos executados pelo árbitro, sendo este posteriormente enviado para um interface de computador que transmite a respectiva informação para os robôs. O segundo é um sistema em tempo real capaz de interpretar um subconjunto da Linguagem Gestual Portuguesa. As experiências demonstraram que o sistema foi capaz de reconhecer as vogais em tempo real de forma fiável. Embora a solução implementada apenas tenha sido treinada para reconhecer as cinco vogais, o sistema é facilmente extensível para reconhecer o resto do alfabeto. As experiências também permitiram mostrar que a base dos sistemas de interação baseados em visão pode ser a mesma para todas as aplicações e, deste modo facilitar a sua implementação. A solução proposta tem ainda a vantagem de ser suficientemente genérica e uma base sólida para o desenvolvimento de sistemas baseados em reconhecimento gestual que podem ser facilmente integrados com qualquer aplicação de interface homem-máquina. A linguagem formal de definição da interface pode ser redefinida e o sistema pode ser facilmente configurado e treinado com um conjunto de gestos diferentes de forma a serem integrados na solução final.