3 resultados para low-frequency fatigue
em Instituto Politécnico do Porto, Portugal
Resumo:
Somatic mutations in the promoter region of telomerase reverse transcriptase (TERT) gene, mainly at positions c.-124 and c.-146 bp, are frequent in several human cancers; yet its presence in gastrointestinal stromal tumor (GIST) has not been reported to date. Herein, we searched for the presence and clinicopathological association of TERT promoter mutations in genomic DNA from 130 bona fide GISTs. We found TERT promoter mutations in 3.8% (5/130) of GISTs. The c.-124C>T mutation was the most common event, present in 2.3% (3/130), and the c.-146C>T mutation in 1.5% (2/130) of GISTs. No significant association was observed between TERT promoter mutation and patient's clinicopathological features. The present study establishes the low frequency (4%) of TERT promoter mutations in GISTs. Further studies are required to confirm our findings and to elucidate the hypothetical biological and clinical impact of TERT promoter mutation in GIST pathogenesis.
Resumo:
The self similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. The fractal geometry is typically characterized by a recurrent structure. This study investigates the identification of a model for the respiratory tree by means of its electrical equivalent based on intrinsic morphology. Measurements were obtained from seven volunteers, in terms of their respiratory impedance by means of its complex representation for frequencies below 5 Hz. A parametric modeling is then applied to the complex valued data points. Since at low-frequency range the inertance is negligible, each airway branch is modeled by using gamma cell resistance and capacitance, the latter having a fractional-order constant phase element (CPE), which is identified from measurements. In addition, the complex impedance is also approximated by means of a model consisting of a lumped series resistance and a lumped fractional-order capacitance. The results reveal that both models characterize the data well, whereas the averaged CPE values are supraunitary and subunitary for the ladder network and the lumped model, respectively.
Resumo:
An adaptive control damping the forced vibration of a car while passing along a bumpy road is investigated. It is based on a simple kinematic description of the desired behavior of the damped system. A modified PID controller containing an approximation of Caputo’s fractional derivative suppresses the high-frequency components related to the bumps and dips, while the low frequency part of passing hills/valleys are strictly traced. Neither a complete dynamic model of the car nor ’a priori’ information on the surface of the road is needed. The adaptive control realizes this kinematic design in spite of the existence of dynamically coupled, excitable internal degrees of freedom. The method is investigated via Scicos-based simulation in the case of a paradigm. It was found that both adaptivity and fractional order derivatives are essential parts of the control that can keep the vibration of the load at bay without directly controlling its motion.