9 resultados para location-based media
em Instituto Politécnico do Porto, Portugal
Resumo:
The current ubiquitous network access and increase in network bandwidth are driving the sales of mobile location-aware user devices and, consequently, the development of context-aware applications, namely location-based services. The goal of this project is to provide consumers of location-based services with a richer end-user experience by means of service composition, personalization, device adaptation and continuity of service. Our approach relies on a multi-agent system composed of proxy agents that act as mediators and providers of personalization meta-services, device adaptation and continuity of service for consumers of pre-existing location-based services. These proxy agents, which have Web services interfaces to ensure a high level of interoperability, perform service composition and take in consideration the preferences of the users, the limitations of the user devices, making the usage of different types of devices seamless for the end-user. To validate and evaluate the performance of this approach, use cases were defined, tests were conducted and results gathered which demonstrated that the initial goals were successfully fulfilled.
Resumo:
Media content personalisation is a major challenge involving viewers as well as media content producer and distributor businesses. The goal is to provide viewers with media items aligned with their interests. Producers and distributors engage in item negotiations to establish the corresponding service level agreements (SLA). In order to address automated partner lookup and item SLA negotiation, this paper proposes the MultiMedia Brokerage (MMB) platform, which is a multiagent system that negotiates SLA regarding media items on behalf of media content producer and distributor businesses. The MMB platform is structured in four service layers: interface, agreement management, business modelling and market. In this context, there are: (i) brokerage SLA (bSLA), which are established between individual businesses and the platform regarding the provision of brokerage services; and (ii) item SLA (iSLA), which are established between producer and distributor businesses about the provision of media items. In particular, this paper describes the negotiation, establishment and enforcement of bSLA and iSLA, which occurs at the agreement and negotiation layers, respectively. The platform adopts a pay-per-use business model where the bSLA define the general conditions that apply to the related iSLA. To illustrate this process, we present a case study describing the negotiation of a bSLA instance and several related iSLA instances. The latter correspond to the negotiation of the Electronic Program Guide (EPG) for a specific end viewer.
Resumo:
The best places to locate the Gas Supply Units (GSUs) on a natural gas systems and their optimal allocation to loads are the key factors to organize an efficient upstream gas infrastructure. The number of GSUs and their optimal location in a gas network is a decision problem that can be formulated as a linear programming problem. Our emphasis is on the formulation and use of a suitable location model, reflecting real-world operations and constraints of a natural gas system. This paper presents a heuristic model, based on lagrangean approach, developed for finding the optimal GSUs location on a natural gas network, minimizing expenses and maximizing throughput and security of supply.The location model is applied to the Iberian high pressure natural gas network, a system modelised with 65 demand nodes. These nodes are linked by physical and virtual pipelines – road trucks with gas in liquefied form. The location model result shows the best places to locate, with the optimal demand allocation and the most economical gas transport mode: by pipeline or by road truck.
Resumo:
A major determinant of the level of effective natural gas supply is the ease to feed customers, minimizing system total costs. The aim of this work is the study of the right number of Gas Supply Units – GSUs - and their optimal location in a gas network. This paper suggests a GSU location heuristic, based on Lagrangean relaxation techniques. The heuristic is tested on the Iberian natural gas network, a system modelized with 65 demand nodes, linked by physical and virtual pipelines. Lagrangean heuristic results along with the allocation of loads to gas sources are presented, using a 2015 forecast gas demand scenario.
Resumo:
This paper presents a novel approach to WLAN propagation models for use in indoor localization. The major goal of this work is to eliminate the need for in situ data collection to generate the Fingerprinting map, instead, it is generated by using analytical propagation models such as: COST Multi-Wall, COST 231 average wall and Motley- Keenan. As Location Estimation Algorithms kNN (K-Nearest Neighbour) and WkNN (Weighted K-Nearest Neighbour) were used to determine the accuracy of the proposed technique. This work is based on analytical and measurement tools to determine which path loss propagation models are better for location estimation applications, based on Receive Signal Strength Indicator (RSSI).This study presents different proposals for choosing the most appropriate values for the models parameters, like obstacles attenuation and coefficients. Some adjustments to these models, particularly to Motley-Keenan, considering the thickness of walls, are proposed. The best found solution is based on the adjusted Motley-Keenan and COST models that allows to obtain the propagation loss estimation for several environments.Results obtained from two testing scenarios showed the reliability of the adjustments, providing smaller errors in the measured values values in comparison with the predicted values.
Resumo:
Fingerprinting is an indoor location technique, based on wireless networks, where data stored during the offline phase is compared with data collected by the mobile device during the online phase. In most of the real-life scenarios, the mobile node used throughout the offline phase is different from the mobile nodes that will be used during the online phase. This means that there might be very significant differences between the Received Signal Strength values acquired by the mobile node and the ones stored in the Fingerprinting Map. As a consequence, this difference between RSS values might contribute to increase the location estimation error. One possible solution to minimize these differences is to adapt the RSS values, acquired during the online phase, before sending them to the Location Estimation Algorithm. Also the internal parameters of the Location Estimation Algorithms, for example the weights of the Weighted k-Nearest Neighbour, might need to be tuned for every type of terminal. This paper focuses both approaches, using Direct Search optimization methods to adapt the Received Signal Strength and to tune the Location Estimation Algorithm parameters. As a result it was possible to decrease the location estimation error originally obtained without any calibration procedure.
Resumo:
The paper presents a study on business micro-location behaviour as well as corresponding factors of influence, conducted in two metropolitan areas, Bucharest-Ilfov (Romania) and Greater Porto (Portugal). By business micro-location we refer to a specific site such as a building or facility, accommodating a business within a small, compact geographical area (e.g. metropolitan area). At this geographical scale, the macroeconomic layer factors were excluded, applicable when discern between regions or countries. The factors derived from location theory and previous empirical studies were surveyed, completing a cross-sectional analysis in order to find out the specific weights of the location factors and preferences, by region and by industry. Based on already established firms’ feedback on location, the specific weights were granted by each industry to the main location factors, types of areas, and types of accommodation facilities. The authors also suggested a model to integrate these results into a Geographical Information System (GIS).
Resumo:
Nowadays there is an increase of location-aware mobile applications. However, these applications only retrieve location with a mobile device's GPS chip. This means that in indoor or in more dense environments these applications don't work properly. To provide location information everywhere a pedestrian Inertial Navigation System (INS) is typically used, but these systems can have a large estimation error since, in order to turn the system wearable, they use low-cost and low-power sensors. In this work a pedestrian INS is proposed, where force sensors were included to combine with the accelerometer data in order to have a better detection of the stance phase of the human gait cycle, which leads to improvements in location estimation. Besides sensor fusion an information fusion architecture is proposed, based on the information from GPS and several inertial units placed on the pedestrian body, that will be used to learn the pedestrian gait behavior to correct, in real-time, the inertial sensors errors, thus improving location estimation.