3 resultados para link acivity
em Instituto Politécnico do Porto, Portugal
RadiaLE: A framework for designing and assessing link quality estimators in wireless sensor networks
Resumo:
Stringent cost and energy constraints impose the use of low-cost and low-power radio transceivers in large-scale wireless sensor networks (WSNs). This fact, together with the harsh characteristics of the physical environment, requires a rigorous WSN design. Mechanisms for WSN deployment and topology control, MAC and routing, resource and mobility management, greatly depend on reliable link quality estimators (LQEs). This paper describes the RadiaLE framework, which enables the experimental assessment, design and optimization of LQEs. RadiaLE comprises (i) the hardware components of the WSN testbed and (ii) a software tool for setting-up and controlling the experiments, automating link measurements gathering through packets-statistics collection, and analyzing the collected data, allowing for LQEs evaluation. We also propose a methodology that allows (i) to properly set different types of links and different types of traffic, (ii) to collect rich link measurements, and (iii) to validate LQEs using a holistic and unified approach. To demonstrate the validity and usefulness of RadiaLE, we present two case studies: the characterization of low-power links and a comparison between six representative LQEs. We also extend the second study for evaluating the accuracy of the TOSSIM 2 channel model.
Resumo:
Radio link quality estimation in Wireless Sensor Networks (WSNs) has a fundamental impact on the network performance and also affects the design of higher-layer protocols. Therefore, for about a decade, it has been attracting a vast array of research works. Reported works on link quality estimation are typically based on different assumptions, consider different scenarios, and provide radically different (and sometimes contradictory) results. This article provides a comprehensive survey on related literature, covering the characteristics of low-power links, the fundamental concepts of link quality estimation in WSNs, a taxonomy of existing link quality estimators, and their performance analysis. To the best of our knowledge, this is the first survey tackling in detail link quality estimation in WSNs. We believe our efforts will serve as a reference to orient researchers and system designers in this area.
Resumo:
Radio Link Quality Estimation (LQE) is a fundamental building block for Wireless Sensor Networks, namely for a reliable deployment, resource management and routing. Existing LQEs (e.g. PRR, ETX, Fourbit, and LQI ) are based on a single link property, thus leading to inaccurate estimation. In this paper, we propose F-LQE, that estimates link quality on the basis of four link quality properties: packet delivery, asymmetry, stability, and channel quality. Each of these properties is defined in linguistic terms, the natural language of Fuzzy Logic. The overall quality of the link is specified as a fuzzy rule whose evaluation returns the membership of the link in the fuzzy subset of good links. Values of the membership function are smoothed using EWMA filter to improve stability. An extensive experimental analysis shows that F-LQE outperforms existing estimators.