2 resultados para limited contacts

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many-core platforms are an emerging technology in the real-time embedded domain. These devices offer various options for power savings, cost reductions and contribute to the overall system flexibility, however, issues such as unpredictability, scalability and analysis pessimism are serious challenges to their integration into the aforementioned area. The focus of this work is on many-core platforms using a limited migrative model (LMM). LMM is an approach based on the fundamental concepts of the multi-kernel paradigm, which is a promising step towards scalable and predictable many-cores. In this work, we formulate the problem of real-time application mapping on a many-core platform using LMM, and propose a three-stage method to solve it. An extended version of the existing analysis is used to assure that derived mappings (i) guarantee the fulfilment of timing constraints posed on worst-case communication delays of individual applications, and (ii) provide an environment to perform load balancing for e.g. energy/thermal management, fault tolerance and/or performance reasons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article deals with a real-life waste collection routing problem. To efficiently plan waste collection, large municipalities may be partitioned into convenient sectors and only then can routing problems be solved in each sector. Three diverse situations are described, resulting in three different new models. In the first situation, there is a single point of waste disposal from where the vehicles depart and to where they return. The vehicle fleet comprises three types of collection vehicles. In the second, the garage does not match any of the points of disposal. The vehicle is unique and the points of disposal (landfills or transfer stations) may have limitations in terms of the number of visits per day. In the third situation, disposal points are multiple (they do not coincide with the garage), they are limited in the number of visits, and the fleet is composed of two types of vehicles. Computational results based not only on instances adapted from the literature but also on real cases are presented and analyzed. In particular, the results also show the effectiveness of combining sectorization and routing to solve waste collection problems.