4 resultados para learning approach
em Instituto Politécnico do Porto, Portugal
Resumo:
In recent years, mobile learning has emerged as an educational approach to decrease the limitation of learning location and adapt the teaching-learning process to all type of students. However, the large number and variety of Web-enabled devices poses challenges for Web content creators who want to automatic get the delivery context and adapt the content to mobile devices. In this paper we study several approaches to adapt the learning content to mobile phones. We present an architecture for deliver uniform m-Learning content to students in a higher School. The system development is organized in two phases: firstly enabling the educational content to mobile devices and then adapting it to all the heterogeneous mobile platforms. With this approach, Web authors will not need to create specialized pages for each kind of device, since the content is automatically transformed to adapt to any mobile device capabilities from WAP to XHTML MP-compliant devices.
Resumo:
In recent years, mobile learning has emerged as an educational approach to decrease the limitation of learning location and adapt the teaching-learning process to all type of students. However, the large number and variety of Web-enabled devices poses challenges for Web content creators who want to automatic get the delivery context and adapt the content to mobile devices. This paper studies several approaches to adapt the learning content to mobile phones. It presents an architecture for deliver uniform m-Learning content to students in a higher School. The system development is organized in two phases: firstly enabling the educational content to mobile devices and then adapting it to all the heterogeneous mobile platforms. With this approach, Web authors will not need to create specialized pages for each kind of device, since the content is automatically transformed to adapt to any mobile device capabilities from WAP to XHTML MP-compliant devices.
Resumo:
Electricity markets are complex environments comprising several negotiation mechanisms. MASCEM (Multi- Agent System for Competitive Electricity Markets) is a simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. ALBidS (Adaptive Learning Strategic Bidding System) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This paper aims to complement ALBidS strategies usage by MASCEM players, providing, through the Six Thinking Hats group decision technique, a means to combine them and take advantages from their different perspectives. The combination of the different proposals resulting from ALBidS’ strategies is performed through the application of a Genetic Algorithm, resulting in an evolutionary learning approach.
Resumo:
The integration of the Smart Grid concept into the electric grid brings to the need for an active participation of small and medium players. This active participation can be achieved using decentralized decisions, in which the end consumer can manage loads regarding the Smart Grid needs. The management of loads must handle the users’ preferences, wills and needs. However, the users’ preferences, wills and needs can suffer changes when faced with exceptional events. This paper proposes the integration of exceptional events into the SCADA House Intelligent Management (SHIM) system developed by the authors, to handle machine learning issues in the domestic consumption context. An illustrative application and learning case study is provided in this paper.