9 resultados para laborativt material
em Instituto Politécnico do Porto, Portugal
Resumo:
O presente trabalho, realizado no âmbito da Tese de Mestrado, tem como principal objectivo estudar as características pozolânicas dos materiais da zona de Arganil para substituição parcial do cimento Portland com o objectivo de intensificar certas qualidades devido à diminuição da porosidade do betão. Estas qualidades são interessantes quando se procura maior durabilidade. Para tal, foram realizados diversos ensaios para a caracterização física, química e mineralógica dos produtos. Os metacaulinos utilizados foram obtidos de amostras de argila submetidas a calcinação (750oC, durante uma hora), processo que permitiu a desidroxilação quase total da matéria-prima, transformando esta numa fase amorfa e irreversível, com propriedades pozolânicas. São apresentados os resultados dos ensaios de caracterização da matéria-prima, das condições de calcinação e do produto resultante da desidroxilação, nomeadamente a determinação da pozolanicidade e superfície específica e das características fundamentais para a aplicabilidade do produto. Descreve ainda o emprego do metacaulino em betões de resistência convencional. Estudou-se a influência do emprego do metacaulino (15% de substituição de cimento, em massa) na resistência à flexão e à compressão (aos 28 dias) em argamassas e o emprego de metacaulino (10%, 15% e 20% de substituição de cimento, em massa) na resistência à compressão (3, 7 e 28 dias) no betão.
Resumo:
Micro-abrasion wear tests with ball-cratering configuration are widely used. Sources of variability are already studied by different authors and conditions for testing are parameterized by BS EN 1071-6: 2007 standard which refers silicon carbide as abrasive. However, the use of other abrasives is possible and allowed. In this work, ball-cratering wear tests were performed using four different abrasive particles of three dissimilar materials: diamond, alumina and silicon carbide. Tests were carried out under the same conditions on a steel plate provided with TiB2 hard coating. For each abrasive, five different test durations were used allowing understanding the initial wear phenomena. Composition and shape of abrasive particles were investigated by SEM and EDS. Scar areas were observed by optical and electronic microscopy in order to understand the wear effects caused by each of them. Scar geometry and grooves were analyzed and compared. Wear coefficient was calculated for each situation. It was observed that diamond particles produce well-defined and circular wear scars. Different silicon carbide particles presented dissimilar results as consequence of distinct particle shape and size distribution.
Resumo:
O transporte de cargas é uma tarefa comum para crianças, adolescentes e adultos, pela necessidade de transferência diária de objetos pessoais, livros e artigos de papelaria para os locais de trabalho ou escolas. Diversos autores apontam que o peso carregado durante transporte de material é o principal responsável pelo aparecimento de dor lombar. Deste modo é importante o constante estudo da temática para a definição recomendações e limites. O presente estudo teve como principais objetivos a caraterização da problemática associada à utilização de mochilas e a determinação do Peso Máximo Aceitável (PMA) e do Índice de Esforço Percebido (IEP) para a tarefa de transporte de mochilas, através da abordagem psicofísica. O estudo foi desenvolvido com estudantes do 7º, 8º e 9º ano de escolaridade e, foi dividido em duas fases. Na 1ª fase foram aplicados questionários para a análise da problemática associada à utilização de diferentes tipos de mochilas escolares. Nesta fase, foram incluídos aspetos associados à identificação do tipo de mochila mais utilizada, as rotinas e hábitos dos estudantes e as características da mochila utilizada. Verificou-se que os estudantes utilizam, maioritariamente, a mochila de duas alças para transporte de material escolar. Posteriormente foram efetuadas medições de peso da mochila, altura e peso aos 131 estudantes que constituíram a amostra da 1º fase. O principal objetivo deste ponto foi identificar o tipo de mochila habitualmente utilizada pelos estudantes assim como, o peso transportado nas mochilas. Na 2ª fase foi efetuado um estudo para a determinação do PMA e do IEP, através da abordagem psicofísica, para a tarefa de transporte de mochila, considerando-se uma amostra constituída por 10 estudantes. Para este estudo, apenas foi considerada a mochila mais frequentemente utilizada, identificada na 1º fase. A tarefa consistiu no transporte da mochila nos dois ombros e com as alças devidamente ajustadas ao corpo, num percurso pré-definido, de acordo com o procedimento experimental. Os resultados indicaram que nem todos os estudantes transportam mochilas com pesos dentro das recomendações da Organização Mundial de Saúde. O PMA determinado pelos estudantes foi de 6.8 kg para a mochila de duas alças e a região dos ombros foi identificada durante todo o estudo como sendo a que apresentava maior intensidade de dor durante o transporte da mochila.
Resumo:
To date, glass fibre reinforced polymer (GFRP) waste recycling is very limited and restricted by thermoset nature of binder matrix and lack of economically viable enduse applications for the recyclates. In this study, efforts were made in order to recycle grinded GFRP waste proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, a mix of powdered and fibrous materials, were incorporated into polyester based mortars as fine aggregate and filler replacements, at different load contents (between 4% up to 12% of total mass) and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Test results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse in concrete-polymer composites.
Resumo:
Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remoulded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behavior over unmodified polyester based mortars, thus indicating the feasibility of the GFRP industrial waste reuse into concrete-polymer composite materials.
Resumo:
Prostate Specific Antigen (PSA) is the biomarker of choice for screening prostate cancer throughout the population, with PSA values above 10 ng/mL pointing out a high probability of associated cancer1. According to the most recent World Health Organization (WHO) data, prostate cancer is the commonest form of cancer in men in Europe2. Early detection of prostate cancer is thus very important and is currently made by screening PSA in men over 45 years old, combined with other alterations in serum and urine parameters. PSA is a glycoprotein with a molecular mass of approximately 32 kDa consisting of one polypeptide chain, which is produced by the secretory epithelium of human prostate. Currently, the standard methods available for PSA screening are immunoassays like Enzyme-Linked Immunoabsorbent Assay (ELISA). These methods are highly sensitive and specific for the detection of PSA, but they require expensive laboratory facilities and high qualify personal resources. Other highly sensitive and specific methods for the detection of PSA have also become available and are in its majority immunobiosensors1,3-5, relying on antibodies. Less expensive methods producing quicker responses are thus needed, which may be achieved by synthesizing artificial antibodies by means of molecular imprinting techniques. These should also be coupled to simple and low cost devices, such as those of the potentiometric kind, one approach that has been proven successful6. Potentiometric sensors offer the advantage of selectivity and portability for use in point-of-care and have been widely recognized as potential analytical tools in this field. The inherent method is simple, precise, accurate and inexpensive regarding reagent consumption and equipment involved. Thus, this work proposes a new plastic antibody for PSA, designed over the surface of graphene layers extracted from graphite. Charged monomers were used to enable an oriented tailoring of the PSA rebinding sites. Uncharged monomers were used as control. These materials were used as ionophores in conventional solid-contact graphite electrodes. The obtained results showed that the imprinted materials displayed a selective response to PSA. The electrodes with charged monomers showed a more stable and sensitive response, with an average slope of -44.2 mV/decade and a detection limit of 5.8X10-11 mol/L (2 ng/mL). The corresponding non-imprinted sensors showed smaller sensitivity, with average slopes of -24.8 mV/decade. The best sensors were successfully applied to the analysis of serum samples, with percentage recoveries of 106.5% and relatives errors of 6.5%.
Resumo:
A novel reusable molecularly imprinted polymer (MIP) assembled on a polymeric layer of carboxylated poly(vinyl chloride) (PVCsingle bondCOOH) for myoglobin (Myo) detection was developed. This polymer was casted on the gold working area of a screen printed electrode (Au-SPE), creating a novel disposable device relying on plastic antibodies. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and Fourier transform infrared spectroscopy (FTIR) studies confirmed the surface modification. The MIP/Au-SPE devices displayed a linear behaviour in EIS from 0.852 to 4.26 μg mL−1, of positive slope 6.50 ± 1.48 (kΩ mL μg−1). The limit of detection was 2.25 μg mL−1. Square wave voltammetric (SWV) assays were made in parallel and showed linear responses between 1.1 and 2.98 μg mL−1. A current decrease was observed against Myo concentration, producing average slopes of −0.28 ± 0.038 μA mL μg−1. MIP/Au-SPE also showed good results in terms of selectivity. The error% found for each interfering species were 7% for troponin T (TnT), 11% for bovine serum albumin (BSA) and 2% for creatine kinase MB (CKMB), respectively. Overall, the technical modification over the Au-SPE was found a suitable approach for screening Myo in biological fluids.
Resumo:
This work introduces two major changes to the conventional protocol for designing plastic antibodies: (i) the imprinted sites were created with charged monomers while the surrounding environment was tailored using neutral material; and (ii) the protein was removed from its imprinted site by means of a protease, aiming at preserving the polymeric network of the plastic antibody. To our knowledge, these approaches were never presented before and the resulting material was named here as smart plastic antibody material (SPAM). As proof of concept, SPAM was tailored on top of disposable gold-screen printed electrodes (Au-SPE), following a bottom-up approach, for targeting myoglobin (Myo) in a point-of-care context. The existence of imprinted sites was checked by comparing a SPAM modified surface to a negative control, consisting of similar material where the template was omitted from the procedure and called non-imprinted materials (NIMs). All stages of the creation of the SPAM and NIM on the Au layer were followed by both electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). AFM imaging was also performed to characterize the topography of the surface. There are two major reasons supporting the fact that plastic antibodies were effectively designed by the above approach: (i) they were visualized for the first time by AFM, being present only in the SPAM network; and (ii) only the SPAM material was able to rebind to the target protein and produce a linear electrical response against EIS and square wave voltammetry (SWV) assays, with NIMs showing a similar-to-random behavior. The SPAM/Au-SPE devices displayed linear responses to Myo in EIS and SWV assays down to 3.5 μg/mL and 0.58 μg/mL, respectively, with detection limits of 1.5 and 0.28 μg/mL. SPAM materials also showed negligible interference from troponin T (TnT), bovine serum albumin (BSA) and urea under SWV assays, showing promising results for point-of-care applications when applied to spiked biological fluids.
Resumo:
JORNADAS DE ELECTROQUÍMICA E INOVAÇÃO 2013