12 resultados para iron oxides
em Instituto Politécnico do Porto, Portugal
Resumo:
There is an imminent need for rapid methods to detect and determine pathogenic bacteria in food products as alternatives to the laborious and time-consuming culture procedures. In this work, an electrochemical immunoassay using iron/gold core/shell nanoparticles (Fe@Au) conjugated with anti-Salmonella antibodies was developed. The chemical synthesis and functionalization of magnetic and gold-coated magnetic nanoparticles is reported. Fe@Au nanoparticles were functionalized with different self-assembled monolayers and characterized using ultraviolet-visible spectrometry, transmission electron microscopy, and voltammetric techniques. The determination of Salmonella typhimurium, on screen-printed carbon electrodes, was performed by square-wave anodic stripping voltammetry through the use of CdS nanocrystals. The calibration curve was established between 1×101 and 1×106 cells/mL and the limit of detection was 13 cells/mL. The developed method showed that it is possible to determine the bacteria in milk at low concentrations and is suitable for the rapid (less than 1 h) and sensitive detection of S. typhimurium in real samples. Therefore, the developed methodology could contribute to the improvement of the quality control of food samples.
Resumo:
There is an interest to create zinc/tin alloys to replace cadmium as a corrosion protective coating material. Existing aqueous electroplating systems for these alloys are commercially available but have several limitations. Dangerous and highly toxic complexing agents are uses e.g. cyanides. To overcome these problems, ionic liquids could provide a solution to obtain an alloy containing 20 to 30% of zinc. Ionic liquids (IL’s) often have wider electrochemical windows which allow the deposition of e.g. refractive metals that can not be deposited from aqueous solutions. In IL’s it is often not necessary to add complexing agents. The Zn/Sn alloy deposition from IL’s is therefore a promising application for the plating industry. Nevertheless, there are some issues with this alternative for aqueous systems. The degradation of the organic components, the control of the concentration of two metals and the risk of a two phase deposition instead of an alloy had to be overcome first. It is the main purpose of this thesis to obtain a Zn/Sn alloy with 20% zinc using IL’s as an electrolyte. First a separate study was performed on both the zinc and the tin deposition. Afterwards, an attempt to deposit a Zn/Sn alloy was made. An introduction to a study about the electrodeposition of refractive metals concludes this work. It initiated the research for oxygen-free IL’s to deposit molybdenum or tungsten. Several parameters (temperature, metal source and concentration, organic complexing agents,…) were optimized for both the zinc, tin and zinc/tin deposition. Experiments were performed both in a parallel plate cell and a Hull cell, so as to investigate the effect of current density as well. Ethaline200 was selected as electrolyte. As substrate, brass and iron were selected, while as anode a plate of the metal to deposit was chosen, tin for the alloy. The best efficiencies were always obtained on brass; however the iron substrate resulted in the best depositions. A concentration of 0.27M ZnCl2, 0.07M SnCl2 with 0.015M of K3-HEDTA as complexant resulted in a deposition containing the desired alloy with the amount of 20% zinc and 80% tin with good appearance. Refractory metals as molybdenum and tungsten cannot be electrodeposited from aqueous solutions without forming a co-deposition with Ni, Co or Fe. Here, IL’s could again provide a solution. A first requirement is the dissolution of a metal source. MoO3 could be suitable, however there are doubts about using oxides. Oxygen-free IL’s were sought for. A first attempt was the combination of ZnCl2 with chlormequat (CCC), which gave liquids below 150°C in molar ratios of 2 : 1 and 3 : 1. Unfortuna tely, MoO3 didn’t dissolve in these IL’s. Another route to design oxygen-free IL’s was the synthesis of quaternary ammonium salts. None of the methods used, proved viable as reaction time was long and resulted in very low yields. Therefore, no sufficient quantities were obtained to perform the possible electrochemical behavior of refractive metals.
Resumo:
Zero valent iron (ZVI) has been extensively used as a reactive medium for the reduction of Cr(VI) to Cr(III) in reactive permeable barriers. The kinetic rate depends strongly on the superficial oxidation of the iron particles used and the preliminary washing of ZVI increases the rate. The reaction has been primarily modelled using a pseudo-first-order kinetics which is inappropriate for a heterogeneous reaction. We assumed a shrinking particle type model where the kinetic rate is proportional to the available iron surface area, to the initial volume of solution and to the chromium concentration raised to a power ˛ which is the order of the chemical reaction occurring at surface. We assumed α= 2/3 based on the likeness to the shrinking particle models with spherical symmetry. Kinetics studies were performed in order to evaluate the suitability of this approach. The influence of the following parameters was experimentally studied: initial available surface area, chromium concentration, temperature and pH. The assumed order for the reaction was confirmed. In addition, the rate constant was calculated from data obtained in different operating conditions. Digital pictures of iron balls were periodically taken and the image treatment allowed for establishing the time evolution of their size distribution.
Resumo:
The interest in zero-valent iron nanoparticles has been increasing significantly since the development of a green production method in which extracts from natural products or wastes are used. However, this field of application is yet poorly studied and lacks knowledge that allows the full understanding of the production and application processes. The aim of the present work was to evaluate the viability of the utilization of several tree leaves to produce extracts which are capable of reducing iron(III) in aqueous solution to form nZVIs. The quality of the extracts was evaluated concerning their antioxidant capacity. The results show that: i) dried leaves produce extracts with higher antioxidant capacities than non-dried leaves, ii) the most favorable extraction conditions (temperature, contact time, and volume:mass ratio) were identified for each leaf, iii) with the aim of developing a green, but also low-cost,method waterwas chosen as solvent, iv) the extracts can be classified in three categories according to their antioxidant capacity (expressed as Fe(II) concentration): >40 mmol L−1; 20–40 mmol L−1; and 2–10 mmol L−1; with oak, pomegranate and green tea leaves producing the richest extracts, and v) TEManalysis proves that nZVIs (d=10–20 nm) can be produced using the tree leaf extracts.
Resumo:
Zero-valent iron nanoparticles (nZVIs) are often used in environmental remediation. Their high surface area that is associated with their high reactivity makes them an excellent agent capable of transforming/degrading contaminants in soils and waters. Due to the recent development of green methods for the production of nZVIs, the use of this material became even more attractive. However, the knowledge of its capacity to degrade distinct types of contaminants is still scarce. The present work describes the study of the application of green nZVIs to the remediation of soils contaminated with a common anti-inflammatory drug, ibuprofen. The main objectives of this work were to produce nZVIs using extracts of grape marc, black tea and vine leaves, to verify the degradation of ibuprofen in aqueous solutions by the nZVIs, to study the remediation process of a sandy soil contaminated with ibuprofen using the nZVIs, and to compare the experiments with other common chemical oxidants. The produced nZVIs had nanometric sizes and were able to degrade ibuprofen (54 to 66% of the initial amount) in aqueous solutions. Similar remediation efficiencies were obtained in sandy soils. In this case the remediation could be enhanced (achieving degradation efficiencies above 95%) through the complementation of the process with a catalyzed nZVI Fenton-like reaction. These results indicate that this remediation technology represents a good alternative to traditional and more aggressive technologies.
Resumo:
An experimental study to evaluate the power dissipation of gears was performed. Three low-loss gear models were manufactured using standard 20° pressure angle tools. Austempered ductile iron (ADI) and 20MnCr5 carburized steel gears were tested in an FZG gear test machine using mineral, ester and polyalphaolephine (PAO)-based oils. The results compare power dissipation, the influence of different tooth flank geometries, materials and lubricants. This work concludes that conventional power-transmission gears can be replaced by these improved and more efficient low–loss models, which can be produced using common tools and that steel gears can be successfully replaced by austempered ductile iron gears.
Resumo:
Low-loss power transmission gears operate at lower temperature than conventional ones because their teeth geometry is optimized to reduce friction. The main objective of this work is to compare the operating stabilization temperature and efficiency of low-loss austempered ductile iron (ADI) and carburized steel gears. Three different low-loss tooth geometries were adopted (types 311, 411 and 611, all produced using standard 20° pressure angle tools) and corresponding steel and ADI gears were tested in a FZG machine. The results obtained showed that low-loss geometries had a significant influence on power loss, gears 611 generating lower power loss than gears 311. At low speeds (500 and 1000 rpm) and high torque ADI gears generated lower power loss than steel gears. However, at high speed and high torque (high input power and high stabilization temperature) steel gears had better efficiency.
Resumo:
The proper disposal of the several types of wastes produced in industrial activities increases production costs. As a consequence, it is common to develop strategies to reuse these wastes in the same process and in different processes or to transform them for use in other processes. This work combines the needs for new synthesis methods of nanomaterials and the reduction of production cost using wastes from citrine juice (orange, lime, lemon and mandarin) to produce a new added value product, green zero-valent iron nanoparticles that can be used in several applications, including environmental remediation. The results indicate that extracts of the tested fruit wastes (peel, albedo and pulp fractions) can be used to produce zero-valent iron nanoparticles (nZVIs). This shows that these wastes can be an added value product. The resulting nZVIs had sizes ranging from 3 up to 300 nm and distinct reactivities (pulp > peel > albedo extracts). All the studied nanoparticles did not present a significant agglomeration/settling tendency when compared to similar nanoparticles, which indicates that they remain in suspension and retain their reactivity.
Resumo:
Iron plays a central role in host-parasite interactions, since both intervenients need iron for survival and growth, but are sensitive to iron-mediated toxicity. The host’s iron overload is often associated with susceptibility to infection. However, it has been previously reported that iron overload prevented the growth of Leishmania major, an agent of cutaneous leishmaniasis, in BALB/c mice. In order to further clarify the impact of iron modulation on the growth of Leishmania in vivo, we studied the effects of iron supplementation or deprivation on the growth of L. infantum, the causative agent of Mediterranean visceral leishmaniasis, in the mouse model. We found that dietary iron deficiency did not affect the protozoan growth, whereas iron overload decreased its replication in the liver and spleen of a susceptible mouse strain. The fact that the iron-induced inhibitory effect could not be seen in mice deficient in NADPH dependent oxidase or nitric oxide synthase 2 suggests that iron eliminates L. infantum in vivo through the interaction with reactive oxygen and nitrogen species. Iron overload did not significantly alter the mouse adaptive immune response against L. infantum. Furthermore, the inhibitory action of iron towards L. infantum was also observed, in a dose dependent manner, in axenic cultures of promastigotes and amastigotes. Importantly, high iron concentrations were needed to achieve such effects. In conclusion, externally added iron synergizes with the host’s oxidative mechanisms of defense in eliminating L. infantum from mouse tissues. Additionally, the direct toxicity of iron against Leishmania suggests a potential use of this metal as a therapeutic tool or the further exploration of iron anti-parasitic mechanisms for the design of new drugs.
Resumo:
Background Iron is vital for almost all living organisms by participating in a wide range of metabolic processes. However, iron concentration in body tissues must be tightly regulated since excessive iron may lead to microbial infections or cause tissue damage. Disorders of iron metabolism are among the most common human diseases and cover several conditions with varied clinical manifestations. Methods An extensive literature review on the basic aspects of iron metabolism was performed, and the most recent findings on this field were highlighted as well. Results New insights on iron metabolism have shed light into its real complexity, and its role in both healthy and pathological states has been recognized. Important discoveries about the iron regulatory machine and imbalances in its regulation have been made, which may lead in a near future to the development of new therapeutic strategies against iron disorders. Besides, the toxicity of free iron and its association with several pathologies has been addressed, although it requires further investigations. Conclusion This review will provide students in the fields of biochemistry and health sciences a brief and clear overview of iron physiology and toxicity, as well as imbalances in the iron homeostasis and associated pathological conditions.
Resumo:
In the last decades nanotechnology has become increasingly important because it offers indisputable advantages to almost every area of expertise, including environmental remediation. In this area the synthesis of highly reactive nanomaterials (e.g. zero-valent iron nanoparticles, nZVI) is gaining the attention of the scientific community, service providers and other stakeholders. The synthesis of nZVI by the recently developed green bottom-up method is extremely promising. However, the lack of information about the characteristics of the synthetized particles hinders a wider and more extensive application. This work aims to evaluate the characteristics of nZVI synthesized through the green method using leaves from different trees. Considering the requirements of a product for environmental remediation the following characteristics were studied: size, shape, reactivity and agglomeration tendency. The mulberry and pomegranate leaf extracts produced the smallest nZVIs (5–10 nm), the peach, pear and vine leaf extracts produced the most reactive nZVIs while the ones produced with passion fruit, medlar and cherry extracts did not settle at high nZVI concentrations (931 and 266 ppm). Considering all tests, the nZVIs obtained from medlar and vine leaf extracts are the ones that could present better performances in the environmental remediation. The information gathered in this paper will be useful to choose the most appropriate leaf extracts and operational conditions for the application of the green nZVIs in environmental remediation.
Resumo:
It is unquestionable that an effective decision concerning the usage of a certain environmental clean-up technology should be conveniently supported. Significant amount of scientific work focussing on the reduction of nitrate concentration in drinking water by both metallic iron and nanomaterials and their usage in permeable reactive barriers has been worldwide published over the last two decades. This work aims to present in a systematic review of the most relevant research done on the removal of nitrate from groundwater using nanosized iron based permeable reactive barriers. The research was based on scientific papers published between 2004 and June 2014. It was performed using 16 combinations of keywords in 34 databases, according to PRISMA statement guidelines. Independent reviewers validated the selection criteria. From the 4161 records filtered, 45 met the selection criteria and were selected to be included in this review. This study's outcomes show that the permeable reactive barriers are, indeed, a suitable technology for denitrification and with good performance record but the long-term impact of the use of nanosized zero valent iron in this remediation process, in both on the environment and on the human health, is far to be conveniently known. As a consequence, further work is required on this matter, so that nanosized iron based permeable reactive barriers for the removal of nitrate from drinking water can be genuinely considered an eco-efficient technology.