2 resultados para information criteria
em Instituto Politécnico do Porto, Portugal
Resumo:
Forecasting future sales is one of the most important issues that is beyond all strategic and planning decisions in effective operations of retail businesses. For profitable retail businesses, accurate demand forecasting is crucial in organizing and planning production, purchasing, transportation and labor force. Retail sales series belong to a special type of time series that typically contain trend and seasonal patterns, presenting challenges in developing effective forecasting models. This work compares the forecasting performance of state space models and ARIMA models. The forecasting performance is demonstrated through a case study of retail sales of five different categories of women footwear: Boots, Booties, Flats, Sandals and Shoes. On both methodologies the model with the minimum value of Akaike's Information Criteria for the in-sample period was selected from all admissible models for further evaluation in the out-of-sample. Both one-step and multiple-step forecasts were produced. The results show that when an automatic algorithm the overall out-of-sample forecasting performance of state space and ARIMA models evaluated via RMSE, MAE and MAPE is quite similar on both one-step and multi-step forecasts. We also conclude that state space and ARIMA produce coverage probabilities that are close to the nominal rates for both one-step and multi-step forecasts.
Resumo:
The use of appropriate acceptance criteria in the risk assessment process for occupational accidents is an important issue but often overlooked in the literature, particularly when new risk assessment methods are proposed and discussed. In most cases, there is no information on how or by whom they were defined, or even how companies can adapt them to their own circumstances. Bearing this in mind, this study analysed the problem of the definition of risk acceptance criteria for occupational settings, defining the quantitative acceptance criteria for the specific case study of the Portuguese furniture industrial sector. The key steps to be considered in formulating acceptance criteria were analysed in the literature review. By applying the identified steps, the acceptance criteria for the furniture industrial sector were then defined. The Cumulative Distribution Function (CDF) for the injury statistics of the industrial sector was identified as the maximum tolerable risk level. The acceptable threshold was defined by adjusting the CDF to the Occupational, Safety & Health (OSH) practitioners’ risk acceptance judgement. Adjustments of acceptance criteria to the companies’ safety cultures were exemplified by adjusting the Burr distribution parameters. An example of a risk matrix was also used to demonstrate the integration of the defined acceptance criteria into a risk metric. This work has provided substantial contributions to the issue of acceptance criteria for occupational accidents, which may be useful in overcoming the practical difficulties faced by authorities, companies and experts.