9 resultados para incentive plans

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In competitive electricity markets it is necessary for a profit-seeking load-serving entity (LSE) to optimally adjust the financial incentives offering the end users that buy electricity at regulated rates to reduce the consumption during high market prices. The LSE in this model manages the demand response (DR) by offering financial incentives to retail customers, in order to maximize its expected profit and reduce the risk of market power experience. The stochastic formulation is implemented into a test system where a number of loads are supplied through LSEs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following the deregulation experience of retail electricity markets in most countries, the majority of the new entrants of the liberalized retail market were pure REP (retail electricity providers). These entities were subject to financial risks because of the unexpected price variations, price spikes, volatile loads and the potential for market power exertion by GENCO (generation companies). A REP can manage the market risks by employing the DR (demand response) programs and using its' generation and storage assets at the distribution network to serve the customers. The proposed model suggests how a REP with light physical assets, such as DG (distributed generation) units and ESS (energy storage systems), can survive in a competitive retail market. The paper discusses the effective risk management strategies for the REPs to deal with the uncertainties of the DAM (day-ahead market) and how to hedge the financial losses in the market. A two-stage stochastic programming problem is formulated. It aims to establish the financial incentive-based DR programs and the optimal dispatch of the DG units and ESSs. The uncertainty of the forecasted day-ahead load demand and electricity price is also taken into account with a scenario-based approach. The principal advantage of this model for REPs is reducing the risk of financial losses in DAMs, and the main benefit for the whole system is market power mitigation by virtually increasing the price elasticity of demand and reducing the peak demand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we formulate the electricity retailers’ short-term decision-making problem in a liberalized retail market as a multi-objective optimization model. Retailers with light physical assets, such as generation and storage units in the distribution network, are considered. Following advances in smart grid technologies, electricity retailers are becoming able to employ incentive-based demand response (DR) programs in addition to their physical assets to effectively manage the risks of market price and load variations. In this model, the DR scheduling is performed simultaneously with the dispatch of generation and storage units. The ultimate goal is to find the optimal values of the hourly financial incentives offered to the end-users. The proposed model considers the capacity obligations imposed on retailers by the grid operator. The profit seeking retailer also has the objective to minimize the peak demand to avoid the high capacity charges in form of grid tariffs or penalties. The non-dominated sorting genetic algorithm II (NSGA-II) is used to solve the multi-objective problem. It is a fast and elitist multi-objective evolutionary algorithm. A case study is solved to illustrate the efficient performance of the proposed methodology. Simulation results show the effectiveness of the model for designing the incentive-based DR programs and indicate the efficiency of NSGA-II in solving the retailers’ multi-objective problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The painting activity is one of the most complex and important activities in automobile manufacturing. The inherent complexity of the painting activity and the frequent need for repainting usually turn the painting process into a bottleneck in automobile assembly plants, which is reflected in higher operating costs and longer overall cycle times. One possible approach for optimizing the performance of the paint shop is to improve the efficiency of the color planning. This can be accomplished by evaluating the relative merits of a set of vehicle painting plans. Since this problem has a multicriteria nature, we resort to the multicriteria decision analysis (MCDA) methodology to tackle it. A recent trend in the MCDA field is the development of hybrid approaches that are used to achieve operational synergies between different methods. Here we apply, for the first time, an integrated approach that combines the strengths of the analytic hierarchy process (AHP) and the Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEE), aided by Geometrical Analysis for Interactive Aid (GAIA), to the problem of assessing alternative vehicle painting plans. The management of the assembly plant found the results of value and is currently using them in order to schedule the painting activities such that an enhancement of the operational efficiency of the paint shop is obtained. This efficiency gain has allowed the management to bid for a new automobile model to be assembled at this specific plant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prova Para Atribuição do Título de Especialista em Contabilidade – Código n.º 344

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do grau de Mestre em Contabilidade e Finanças Orientador: Professor Doutor José Freitas Santos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada ao Instituto Politécnico do Porto para obtenção do Grau de Mestre em Gestão das Organizações, Ramo de Gestão de Empresas Orientador: Professor Doutor Orlando Manuel Martins Marques de Lima Rua

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current regulatory framework for maintenance outage scheduling in distribution systems needs revision to face the challenges of future smart grids. In the smart grid context, generation units and the system operator perform new roles with different objectives, and an efficient coordination between them becomes necessary. In this paper, the distribution system operator (DSO) of a microgrid receives the proposals for shortterm (ST) planned outages from the generation and transmission side, and has to decide the final outage plans, which is mandatory for the members to follow. The framework is based on a coordination procedure between the DSO and other market players. This paper undertakes the challenge of optimization problem in a smart grid where the operator faces with uncertainty. The results show the effectiveness and applicability of the proposed regulatory framework in the modified IEEE 34- bus test system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Involving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.