7 resultados para impulses
em Instituto Politécnico do Porto, Portugal
Resumo:
This study analyzed the influence of different speeds on ground reaction force’s (GRF), impulses and mean vertical force during gait of people submitted to occasional overload (backpack). A force plate was used to record the GRF data of 60 young adult subjects walking in two different cadences: 69 steps/min (slow gait) and 120 steps/min (fast gait). During the slow gait, the impact and propulsive impulses of vertical GRF, propulsive impulse of anterior-posterior GRF, impulse of medial-lateral GRF and duration of stance phase were larger than during the fast gait; the mean vertical force was the only variable that showed larger values during fast gait. Therefore, slow gait may present a larger possibility of blister development and gait unbalance, while the fast gait, even presenting a small impulse, seems to be more harmful to the musculoskeletal system.
Resumo:
This paper analyses earthquake data in the perspective of dynamical systems and its Pseudo Phase Plane representation. The seismic data is collected from the Bulletin of the International Seismological Centre. The geological events are characterised by their magnitude and geographical location and described by means of time series of sequences of Dirac impulses. Fifty groups of data series are considered, according to the Flinn-Engdahl seismic regions of Earth. For each region, Pearson’s correlation coefficient is used to find the optimal time delay for reconstructing the Pseudo Phase Plane. The Pseudo Phase Plane plots are then analysed and characterised.
Resumo:
Forest fires dynamics is often characterized by the absence of a characteristic length-scale, long range correlations in space and time, and long memory, which are features also associated with fractional order systems. In this paper a public domain forest fires catalogue, containing information of events for Portugal, covering the period from 1980 up to 2012, is tackled. The events are modelled as time series of Dirac impulses with amplitude proportional to the burnt area. The time series are viewed as the system output and are interpreted as a manifestation of the system dynamics. In the first phase we use the pseudo phase plane (PPP) technique to describe forest fires dynamics. In the second phase we use multidimensional scaling (MDS) visualization tools. The PPP allows the representation of forest fires dynamics in two-dimensional space, by taking time series representative of the phenomena. The MDS approach generates maps where objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to better understand forest fires behaviour.
Resumo:
This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.
Resumo:
This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.
Resumo:
In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.
Resumo:
Every year forest fires consume large areas, being a major concern in many countries like Australia, United States and Mediterranean Basin European Countries (e.g., Portugal, Spain, Italy and Greece). Understanding patterns of such events, in terms of size and spatiotemporal distributions, may help to take measures beforehand in view of possible hazards and decide strategies of fire prevention, detection and suppression. Traditional statistical tools have been used to study forest fires. Nevertheless, those tools might not be able to capture the main features of fires complex dynamics and to model fire behaviour [1]. Forest fires size-frequency distributions unveil long range correlations and long memory characteristics, which are typical of fractional order systems [2]. Those complex correlations are characterized by self-similarity and absence of characteristic length-scale, meaning that forest fires exhibit power-law (PL) behaviour. Forest fires have also been proved to exhibit time-clustering phenomena, with timescales of the order of few days [3]. In this paper, we study forest fires in the perspective of dynamical systems and fractional calculus (FC). Public domain forest fires catalogues, containing data of events occurred in Portugal, in the period 1980 up to 2011, are considered. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses. The frequency spectra of such signals are determined using Fourier transforms, and approximated through PL trendlines. The PL parameters are then used to unveil the fractional-order dynamics characteristics of the data. To complement the analysis, correlation indices are used to compare and find possible relationships among the data. It is shown that the used approach can be useful to expose hidden patterns not captured by traditional tools.