43 resultados para hybrid weak form

em Instituto Politécnico do Porto, Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Não existe uma definição única de processo de memória de longo prazo. Esse processo é geralmente definido como uma série que possui um correlograma decaindo lentamente ou um espectro infinito de frequência zero. Também se refere que uma série com tal propriedade é caracterizada pela dependência a longo prazo e por não periódicos ciclos longos, ou que essa característica descreve a estrutura de correlação de uma série de longos desfasamentos ou que é convencionalmente expressa em termos do declínio da lei-potência da função auto-covariância. O interesse crescente da investigação internacional no aprofundamento do tema é justificado pela procura de um melhor entendimento da natureza dinâmica das séries temporais dos preços dos ativos financeiros. Em primeiro lugar, a falta de consistência entre os resultados reclama novos estudos e a utilização de várias metodologias complementares. Em segundo lugar, a confirmação de processos de memória longa tem implicações relevantes ao nível da (1) modelação teórica e econométrica (i.e., dos modelos martingale de preços e das regras técnicas de negociação), (2) dos testes estatísticos aos modelos de equilíbrio e avaliação, (3) das decisões ótimas de consumo / poupança e de portefólio e (4) da medição de eficiência e racionalidade. Em terceiro lugar, ainda permanecem questões científicas empíricas sobre a identificação do modelo geral teórico de mercado mais adequado para modelar a difusão das séries. Em quarto lugar, aos reguladores e gestores de risco importa saber se existem mercados persistentes e, por isso, ineficientes, que, portanto, possam produzir retornos anormais. O objetivo do trabalho de investigação da dissertação é duplo. Por um lado, pretende proporcionar conhecimento adicional para o debate da memória de longo prazo, debruçando-se sobre o comportamento das séries diárias de retornos dos principais índices acionistas da EURONEXT. Por outro lado, pretende contribuir para o aperfeiçoamento do capital asset pricing model CAPM, considerando uma medida de risco alternativa capaz de ultrapassar os constrangimentos da hipótese de mercado eficiente EMH na presença de séries financeiras com processos sem incrementos independentes e identicamente distribuídos (i.i.d.). O estudo empírico indica a possibilidade de utilização alternativa das obrigações do tesouro (OT’s) com maturidade de longo prazo no cálculo dos retornos do mercado, dado que o seu comportamento nos mercados de dívida soberana reflete a confiança dos investidores nas condições financeiras dos Estados e mede a forma como avaliam as respetiva economias com base no desempenho da generalidade dos seus ativos. Embora o modelo de difusão de preços definido pelo movimento Browniano geométrico gBm alegue proporcionar um bom ajustamento das séries temporais financeiras, os seus pressupostos de normalidade, estacionariedade e independência das inovações residuais são adulterados pelos dados empíricos analisados. Por isso, na procura de evidências sobre a propriedade de memória longa nos mercados recorre-se à rescaled-range analysis R/S e à detrended fluctuation analysis DFA, sob abordagem do movimento Browniano fracionário fBm, para estimar o expoente Hurst H em relação às séries de dados completas e para calcular o expoente Hurst “local” H t em janelas móveis. Complementarmente, são realizados testes estatísticos de hipóteses através do rescaled-range tests R/S , do modified rescaled-range test M - R/S e do fractional differencing test GPH. Em termos de uma conclusão única a partir de todos os métodos sobre a natureza da dependência para o mercado acionista em geral, os resultados empíricos são inconclusivos. Isso quer dizer que o grau de memória de longo prazo e, assim, qualquer classificação, depende de cada mercado particular. No entanto, os resultados gerais maioritariamente positivos suportam a presença de memória longa, sob a forma de persistência, nos retornos acionistas da Bélgica, Holanda e Portugal. Isto sugere que estes mercados estão mais sujeitos a maior previsibilidade (“efeito José”), mas também a tendências que podem ser inesperadamente interrompidas por descontinuidades (“efeito Noé”), e, por isso, tendem a ser mais arriscados para negociar. Apesar da evidência de dinâmica fractal ter suporte estatístico fraco, em sintonia com a maior parte dos estudos internacionais, refuta a hipótese de passeio aleatório com incrementos i.i.d., que é a base da EMH na sua forma fraca. Atendendo a isso, propõem-se contributos para aperfeiçoamento do CAPM, através da proposta de uma nova fractal capital market line FCML e de uma nova fractal security market line FSML. A nova proposta sugere que o elemento de risco (para o mercado e para um ativo) seja dado pelo expoente H de Hurst para desfasamentos de longo prazo dos retornos acionistas. O expoente H mede o grau de memória de longo prazo nos índices acionistas, quer quando as séries de retornos seguem um processo i.i.d. não correlacionado, descrito pelo gBm(em que H = 0,5 , confirmando- se a EMH e adequando-se o CAPM), quer quando seguem um processo com dependência estatística, descrito pelo fBm(em que H é diferente de 0,5, rejeitando-se a EMH e desadequando-se o CAPM). A vantagem da FCML e da FSML é que a medida de memória de longo prazo, definida por H, é a referência adequada para traduzir o risco em modelos que possam ser aplicados a séries de dados que sigam processos i.i.d. e processos com dependência não linear. Então, estas formulações contemplam a EMH como um caso particular possível.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this article is to provide additional knowledge to the discussion of long-term memory, leaning over the behavior of the main Portuguese stock index. The first four moments are calculated using time windows of increasing size and sliding time windows of fixed size equal to 50 days and suggest that daily returns are non-ergodic and non-stationary. Seeming that the series is best described by a fractional Brownian motion approach, we use the rescaled-range analysis (R/S) and the detrended fluctuation analysis (DFA). The findings indicate evidence of long term memory in the form of persistence. This evidence of fractal structure suggests that the market is subject to greater predictability and contradicts the efficient market hypothesis in its weak form. This raises issues regarding theoretical modeling of asset pricing. In addition, we carried out a more localized (in time) study to identify the evolution of the degree of long-term dependency over time using windows 200-days and 400-days. The results show a switching feature in the index, from persistent to anti-persistent, quite evident from 2010.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article aims to contribute to the discussion of long-term dependence, focusing on the behavior of the main Belgian stock index. Non-parametric analyzes of the general characteristics of temporal frequency show that daily returns are non-ergodic and non-stationary. Therefore, we use the rescaled-range analysis (R/S) and the detrended fluctuation analysis (DFA), under the fractional Brownian motion approach, and we found slight evidence of long-term dependence. These results refute the random walk hypothesis with i.i.d. increments, which is the basis of the EMH in its weak form, and call into question some theoretical modeling of asset pricing. Other more localized complementary study, to identify the evolution of the degree of dependence over time windows, showed that the index has become less persistent from 2010. This may mean a maturing market by the extension of the effects of current financial crisis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a collaborative virtual learning environment, which includes technologies such as 3D virtual representations, learning and content management systems, remote experiments, and collaborative learning spaces, among others. It intends to facilitate the construction, management and sharing of knowledge among teachers and students, in a global perspective. The environment proposes the use of 3D social representations for accessing learning materials in a dynamic and interactive form, which is regarded to be closer to the physical reality experienced by teachers and students in a learning context. A first implementation of the proposed extended immersive learning environment, in the area of solid mechanics, is also described, including the access to theoretical contents and a remote experiment to determine the elastic modulus of a given object.These instructions give you basic guidelines for preparing camera-ready papers for conference proceedings. Use this document as a template if you are using Microsoft Word 6.0 or later. Otherwise, use this document as an instruction set. The electronic file of your paper will be formatted further. Define all symbols used in the abstract. Do not cite references in the abstract.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A satisfação das necessidades energéticas mundiais, cada vez mais exigentes, bem como a necessidade urgente de procurar caminhos que permitam usufruir de energia, da forma menos poluente possível, levam à necessidade de serem explorados caminhos que permitam cumprir estes pressupostos. A escolha da utilização das energias renováveis na produção de energia, torna-se cada vez mais interessante, quer do ponto de vista ambiental quer económico. O fundamento da lógica difusa está associado à recolha de informações vagas, que são no fundo uma linguagem falada por seres humanos, possibilitando a passagem deste tipo de linguagem para formato numérico, permitindo assim uma manipulação computacional. Elementos climáticos como o sol e o vento, podem ser descritos em forma de variáveis linguísticas, como é o caso de vento forte, temperatura baixa, irradiação fraca, etc. Isto faz com que a aplicação de um controlo a partir destes fenómenos, justifique ser realizado com recurso a sistemas de inferência difusa. Para a realização do trabalho proposto, foram consumados estudos relativos às energias renováveis, com particular enfoque na solar e na eólica. Também foi realizado um estudo dos conceitos pertencentes à lógica difusa e a sistemas de inferência difusa com o objetivo de perceber os diversos parâmetros constituintes desta matéria. Foi realizado o estudo e desenvolvimento de um sistema de aquisição de dados, bem como do controlador difuso que é o busílis do trabalho descrito neste relatório. Para tal, o trabalho foi efetuado com o recurso ao software MATLAB, a partir do qual foram desenvolvidas aplicações que possibilitaram a obtenção de dados climáticos, com vista à sua utilização na toolbox Fuzzy Logic a qual foi utilizada para o desenvolvimento de todo o algoritmo de controlo. Com a possibilidade de aquisição de dados concluída e das variáveis que iriam ser necessárias definidas, foi implementado o controlador difuso que foi sendo sintonizado ao longo do trabalho por forma a garantir os melhores resultados possíveis. Com o recurso à ferramenta Guide, também do MATLAB, foi criada a interface do sistema com o utilizador, sendo possível a averiguação da energia a ser produzida, bem como das contribuições de cada uma das fontes de energia renováveis para a obtenção dessa mesma energia. Por último, foi feita uma análise de resultados através da comparação entre os valores reais esperados e os valores obtidos pelo controlador difuso, bem como assinaladas conclusões e possibilidades de desenvolvimentos futuros deste trabalho.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter addresses the resolution of dynamic scheduling by means of meta-heuristic and multi-agent systems. Scheduling is an important aspect of automation in manufacturing systems. Several contributions have been proposed, but the problem is far from being solved satisfactorily, especially if scheduling concerns real world applications. The proposed multi-agent scheduling system assumes the existence of several resource agents (which are decision-making entities based on meta-heuristics) distributed inside the manufacturing system that interact with other agents in order to obtain optimal or near-optimal global performances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a Constraint Logic Programming (CLP) based model, and hybrid solving method for the Scheduling of Maintenance Activities in the Power Transmission Network. The model distinguishes from others not only because of its completeness but also by the way it models and solves the Electric Constraints. Specifically we present a efficient filtering algorithm for the Electrical Constraints. Furthermore, the solving method improves the pure CLP methods efficiency by integrating a type of Local Search technique with CLP. To test the approach we compare the method results with another method using a 24 bus network, which considerers 42 tasks and 24 maintenance periods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new methodology to reduce the probability of occurring states that cause load curtailment, while minimizing the involved costs to achieve that reduction. The methodology is supported by a hybrid method based on Fuzzy Set and Monte Carlo Simulation to catch both randomness and fuzziness of component outage parameters of transmission power system. The novelty of this research work consists in proposing two fundamentals approaches: 1) a global steady approach which deals with building the model of a faulted transmission power system aiming at minimizing the unavailability corresponding to each faulted component in transmission power system. This, results in the minimal global cost investment for the faulted components in a system states sample of the transmission network; 2) a dynamic iterative approach that checks individually the investment’s effect on the transmission network. A case study using the Reliability Test System (RTS) 1996 IEEE 24 Buses is presented to illustrate in detail the application of the proposed methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology for distribution networks reconfiguration in outage presence in order to choose the reconfiguration that presents the lower power losses. The methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modelling for system component outage parameters. Fuzzy membership functions of system component outage parameters are obtained by statistical records. A hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. Once obtained the system states by Monte Carlo simulation, a logical programming algorithm is applied to get all possible reconfigurations for every system state. In order to evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation a distribution power flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology to a practical case, the paper includes a case study that considers a real distribution network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many current e-commerce systems provide personalization when their content is shown to users. In this sense, recommender systems make personalized suggestions and provide information of items available in the system. Nowadays, there is a vast amount of methods, including data mining techniques that can be employed for personalization in recommender systems. However, these methods are still quite vulnerable to some limitations and shortcomings related to recommender environment. In order to deal with some of them, in this work we implement a recommendation methodology in a recommender system for tourism, where classification based on association is applied. Classification based on association methods, also named associative classification methods, consist of an alternative data mining technique, which combines concepts from classification and association in order to allow association rules to be employed in a prediction context. The proposed methodology was evaluated in some case studies, where we could verify that it is able to shorten limitations presented in recommender systems and to enhance recommendation quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Involving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O aumento do número de recursos digitais disponíveis dificulta a tarefa de pesquisa dos recursos mais relevantes, no sentido de se obter o que é mais relevante. Assim sendo, um novo tipo de ferramentas, capaz de recomendar os recursos mais apropriados às necessidades do utilizador, torna-se cada vez mais necessário. O objetivo deste trabalho de I&D é o de implementar um módulo de recomendação inteligente para plataformas de e-learning. As recomendações baseiam-se, por um lado, no perfil do utilizador durante o processo de formação e, por outro lado, nos pedidos efetuados pelo utilizador, através de pesquisas [Tavares, Faria e Martins, 2012]. O e-learning 3.0 é um projeto QREN desenvolvido por um conjunto de organizações e tem com objetivo principal implementar uma plataforma de e-learning. Este trabalho encontra-se inserido no projeto e-learning 3.0 e consiste no desenvolvimento de um módulo de recomendação inteligente (MRI). O MRI utiliza diferentes técnicas de recomendação já aplicadas noutros sistemas de recomendação. Estas técnicas são utilizadas para criar um sistema de recomendação híbrido direcionado para a plataforma de e-learning. Para representar a informação relevante, sobre cada utilizador, foi construído um modelo de utilizador. Toda a informação necessária para efetuar a recomendação será representada no modelo do utilizador, sendo este modelo atualizado sempre que necessário. Os dados existentes no modelo de utilizador serão utilizados para personalizar as recomendações produzidas. As recomendações estão divididas em dois tipos, a formal e a não formal. Na recomendação formal o objetivo é fazer sugestões relacionadas a um curso específico. Na recomendação não-formal, o objetivo é fazer sugestões mais abrangentes onde as recomendações não estão associadas a nenhum curso. O sistema proposto é capaz de sugerir recursos de aprendizagem, com base no perfil do utilizador, através da combinação de técnicas de similaridade de palavras, um algoritmo de clustering e técnicas de filtragem [Tavares, Faria e Martins, 2012].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reduction of luvastatin (FLV) at a hanging mercury-drop electrode (HMDE) was studied by square-wave adsorptive-stripping voltammetry (SWAdSV). FLV can be accumulated and reduced at the electrode, with a maximum peak current intensity at a potential of approximately 1.26V vs. AgCl=Ag, in an aqueous electrolyte solution of pH 5.25. The method shows linearity between peak current intensity and FLV concentration between 1.0 10 8 and 2.7 10 6 mol L 1. Limits of detection (LOD) and quantification (LOQ) were found to be 9.9 10 9 mol L 1 and 3.3 10 8 mol L 1, respectively. Furthermore, FLV oxidation at a glassy carbon electrode surface was used for its hydrodynamic monitoring by amperometric detection in a flow-injection system. The amperometric signal was linear with FLV concentration over the range 1.0 10 6 to 1.0 10 5 mol L 1, with an LOD of 2.4 10 7 mol L 1 and an LOQ of 8.0 10 7 mol L 1. A sample rate of 50 injections per hour was achieved. Both methods were validated and showed to be precise and accurate, being satisfactorily applied to the determination of FLV in a commercial pharmaceutical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of this paper is to analyze the behavior of nonmono- tone hybrid tabu search approaches when solving systems of nonlinear inequalities and equalities through the global optimization of an appro- priate merit function. The algorithm combines global and local searches and uses a nonmonotone reduction of the merit function to choose the local search. Relaxing the condition aims to call the local search more often and reduces the overall computational e ort. Two variants of a perturbed pattern search method are implemented as local search. An experimental study involving a variety of problems available in the lit- erature is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in networking and information technologies are transforming factory-floor communication systems into a mainstream activity within industrial automation. It is now recognized that future industrial computer systems will be intimately tied to real-time computing and to communication technologies. For this vision to succeed, complex heterogeneous factory-floor communication networks (including mobile/wireless components) need to function in a predictable, flawless, efficient and interoperable way. In this paper we re-visit the issue of supporting real-time communications in hybrid wired/wireless fieldbus-based networks, bringing into it some experimental results obtained in the framework of the RFieldbus ISEP pilot.