2 resultados para household saving

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study addresses to the optimization of pultrusion manufacturing process from the energy-consumption point of view. The die heating system of external platen heaters commonly used in the pultrusion machines is one of the components that contribute the most to the high consumption of energy of pultrusion process. Hence, instead of the conventional multi-planar heaters, a new internal die heating system that leads to minor heat losses is proposed. The effect of the number and relative position of the embedded heaters along the die is also analysed towards the setting up of the optimum arrangement that minimizes both the energy rate and consumption. Simulation and optimization processes were greatly supported by Finite Element Analysis (FEA) and calibrated with basis on the temperature profile computed through thermography imaging techniques. The main outputs of this study allow to conclude that the use of embedded cylindrical resistances instead of external planar heaters leads to drastic reductions of both the power consumption and the warm-up periods of the die heating system. For the analysed die tool and process, savings on energy consumption up to 60% and warm-up period stages less than an half hour were attained with the new internal heating system. The improvements achieved allow reducing the power requirements on pultrusion process, and thus minimize industrial costs and contribute to a more sustainable pultrusion manufacturing industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy consumption is one of the major issues for modern embedded systems. Early, power saving approaches mainly focused on dynamic power dissipation, while neglecting the static (leakage) energy consumption. However, technology improvements resulted in a case where static power dissipation increasingly dominates. Addressing this issue, hardware vendors have equipped modern processors with several sleep states. We propose a set of leakage-aware energy management approaches that reduce the energy consumption of embedded real-time systems while respecting the real-time constraints. Our algorithms are based on the race-to-halt strategy that tends to run the system at top speed with an aim to create long idle intervals, which are used to deploy a sleep state. The effectiveness of our algorithms is illustrated with an extensive set of simulations that show an improvement of up to 8% reduction in energy consumption over existing work at high utilization. The complexity of our algorithms is smaller when compared to state-of-the-art algorithms. We also eliminate assumptions made in the related work that restrict the practical application of the respective algorithms. Moreover, a novel study about the relation between the use of sleep intervals and the number of pre-emptions is also presented utilizing a large set of simulation results, where our algorithms reduce the experienced number of pre-emptions in all cases. Our results show that sleep states in general can save up to 30% of the overall number of pre-emptions when compared to the sleep-agnostic earliest-deadline-first algorithm.