4 resultados para homogeneous Markov chain
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper studies the dynamical properties of a system with distributed backlash and impact phenomena. This means that it is considered a chain of masses that interact with each other solely by means of backlash and impact phenomena. It is observed the emergence of non-linear phenomena resembling those encountered in the Fermi-Pasta-Ulam problem.
Resumo:
We consider an optimal control problem with a deterministic finite horizon and state variable dynamics given by a Markov-switching jump–diffusion stochastic differential equation. Our main results extend the dynamic programming technique to this larger family of stochastic optimal control problems. More specifically, we provide a detailed proof of Bellman’s optimality principle (or dynamic programming principle) and obtain the corresponding Hamilton–Jacobi–Belman equation, which turns out to be a partial integro-differential equation due to the extra terms arising from the Lévy process and the Markov process. As an application of our results, we study a finite horizon consumption– investment problem for a jump–diffusion financial market consisting of one risk-free asset and one risky asset whose coefficients are assumed to depend on the state of a continuous time finite state Markov process. We provide a detailed study of the optimal strategies for this problem, for the economically relevant families of power utilities and logarithmic utilities.
Resumo:
For uniformly asymptotically affine (uaa) Markov maps on train tracks, we prove the following type of rigidity result: if a topological conjugacy between them is (uaa) at a point in the train track then the conjugacy is (uaa) everywhere. In particular, our methods apply to the case in which the domains of the Markov maps are Canter sets. We also present similar statements for (uaa:) and C-r Markov families. These results generalize the similar ones of Sullivan and de Faria for C-r expanding circle maps with r > 1 and have useful applications to hyperbolic dynamics on surfaces and laminations.
Resumo:
23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2015). 4 to 6, Mar, 2015. Turku, Finland.