11 resultados para high-dimensional space geometry

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A navegação de veículos autónomos em ambientes não estruturados continua a ser um problema em aberto. A complexidade do mundo real ainda é um desafio. A difícil caracterização do relevo irregular, dos objectos dinâmicos e pouco distintos(e a inexistência de referências de localização) tem sido alvo de estudo e do desenvolvimento de vários métodos que permitam de uma forma eficiente, e em tempo real, modelizar o espaço tridimensional. O trabalho realizado ao longo desta dissertação insere-se na estratégia do Laboratório de Sistemas Autónomos (LSA) na pesquisa e desenvolvimento de sistemas sensoriais que possibilitem o aumento da capacidade de percepção das plataformas robóticas. O desenvolvimento de um sistema de modelização tridimensional visa acrescentar aos projectos LINCE (Land INtelligent Cooperative Explorer) e TIGRE (Terrestrial Intelligent General proposed Robot Explorer) maior autonomia e capacidade de exploração e mapeamento. Apresentamos alguns sensores utilizados para a aquisição de modelos tridimensionais, bem como alguns dos métodos mais utilizados para o processo de mapeamento, e a sua aplicação em plataformas robóticas. Ao longo desta dissertação são apresentadas e validadas técnicas que permitem a obtenção de modelos tridimensionais. É abordado o problema de analisar a cor e geometria dos objectos, e da criação de modelos realistas que os representam. Desenvolvemos um sistema que nos permite a obtenção de dados volumétricos tridimensionais, a partir de múltiplas leituras de um Laser Range Finder bidimensional de médio alcance. Aos conjuntos de dados resultantes associamos numa nuvem de pontos coerente e referenciada. Foram desenvolvidas e implementadas técnicas de segmentação que permitem inspeccionar uma nuvem de pontos e classifica-la quanto às suas características geométricas, bem como ao tipo de estruturas que representem. São apresentadas algumas técnicas para a criação de Mapas de Elevação Digital, tendo sido desenvolvida um novo método que tira partido da segmentação efectuada

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper formulates a genetic algorithm that evolves two types of objects in a plane. The fitness function promotes a relationship between the objects that is optimal when some kind of interface between them occurs. Furthermore, the algorithm adopts an hexagonal tessellation of the two-dimensional space for promoting an efficient method of the neighbour modelling. The genetic algorithm produces special patterns with resemblances to those revealed in percolation phenomena or in the symbiosis found in lichens. Besides the analysis of the spacial layout, a modelling of the time evolution is performed by adopting a distance measure and the modelling in the Fourier domain in the perspective of fractional calculus. The results reveal a consistent, and easy to interpret, set of model parameters for distinct operating conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a complex-order van der Pol oscillator is considered. The complex derivative Dα±ȷβ , with α,β∈R + is a generalization of the concept of integer derivative, where α=1, β=0. By applying the concept of complex derivative, we obtain a high-dimensional parameter space. Amplitude and period values of the periodic solutions of the two versions of the complex-order van der Pol oscillator are studied for variation of these parameters. Fourier transforms of the periodic solutions of the two oscillators are also analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A presente dissertação apresenta uma solução para o problema de modelização tridimensional de galerias subterrâneas. O trabalho desenvolvido emprega técnicas provenientes da área da robótica móvel para obtenção um sistema autónomo móvel de modelização, capaz de operar em ambientes não estruturados sem acesso a sistemas de posicionamento global, designadamente GPS. Um sistema de modelização móvel e autónomo pode ser bastante vantajoso, pois constitui um método rápido e simples de monitorização das estruturas e criação de representações virtuais das galerias com um elevado nível de detalhe. O sistema de modelização desloca-se no interior dos túneis para recolher informações sensoriais sobre a geometria da estrutura. A tarefa de organização destes dados com vista _a construção de um modelo coerente, exige um conhecimento exacto do percurso praticado pelo sistema, logo o problema de localização da plataforma sensorial tem que ser resolvido. A formulação de um sistema de localização autónoma tem que superar obstáculos que se manifestam vincadamente nos ambientes underground, tais como a monotonia estrutural e a já referida ausência de sistemas de posicionamento global. Neste contexto, foi abordado o conceito de SLAM (Simultaneous Loacalization and Mapping) para determinação da localização da plataforma sensorial em seis graus de liberdade. Seguindo a abordagem tradicional, o núcleo do algoritmo de SLAM consiste no filtro de Kalman estendido (EKF { Extended Kalman Filter ). O sistema proposto incorpora métodos avançados do estado da arte, designadamente a parametrização em profundidade inversa (Inverse Depth Parametrization) e o método de rejeição de outliers 1-Point RANSAC. A contribuição mais importante do método por nós proposto para o avanço do estado da arte foi a fusão da informação visual com a informação inercial. O algoritmo de localização foi testado com base em dados reais, adquiridos no interior de um túnel rodoviário. Os resultados obtidos permitem concluir que, ao fundir medidas inerciais com informações visuais, conseguimos evitar o fenómeno de degeneração do factor de escala, comum nas aplicações de localização através de sistemas puramente monoculares. Provámos simultaneamente que a correcção de um sistema de localização inercial através da consideração de informações visuais é eficaz, pois permite suprimir os desvios de trajectória que caracterizam os sistemas de dead reckoning. O algoritmo de modelização, com base na localização estimada, organiza no espaço tridimensional os dados geométricos adquiridos, resultando deste processo um modelo em nuvem de pontos, que posteriormente _e convertido numa malha triangular, atingindo-se assim uma representação mais realista do cenário original.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forest fires dynamics is often characterized by the absence of a characteristic length-scale, long range correlations in space and time, and long memory, which are features also associated with fractional order systems. In this paper a public domain forest fires catalogue, containing information of events for Portugal, covering the period from 1980 up to 2012, is tackled. The events are modelled as time series of Dirac impulses with amplitude proportional to the burnt area. The time series are viewed as the system output and are interpreted as a manifestation of the system dynamics. In the first phase we use the pseudo phase plane (PPP) technique to describe forest fires dynamics. In the second phase we use multidimensional scaling (MDS) visualization tools. The PPP allows the representation of forest fires dynamics in two-dimensional space, by taking time series representative of the phenomena. The MDS approach generates maps where objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to better understand forest fires behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to study the relationships between chromosomal DNA sequences of twenty species. We propose a methodology combining DNA-based word frequency histograms, correlation methods, and an MDS technique to visualize structural information underlying chromosomes (CRs) and species. Four statistical measures are tested (Minkowski, Cosine, Pearson product-moment, and Kendall τ rank correlations) to analyze the information content of 421 nuclear CRs from twenty species. The proposed methodology is built on mathematical tools and allows the analysis and visualization of very large amounts of stream data, like DNA sequences, with almost no assumptions other than the predefined DNA “word length.” This methodology is able to produce comprehensible three-dimensional visualizations of CR clustering and related spatial and structural patterns. The results of the four test correlation scenarios show that the high-level information clusterings produced by the MDS tool are qualitatively similar, with small variations due to each correlation method characteristics, and that the clusterings are a consequence of the input data and not method’s artifacts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The widespread employment of carbon-epoxy laminates in high responsibility and severely loaded applications introduces an issue regarding their handling after damage. Repair of these structures should be evaluated, instead of their disposal, for cost saving and ecological purposes. Under this perspective, the availability of efficient repair methods is essential to restore the strength of the structure. The development and validation of accurate predictive tools for the repairs behaviour are also extremely important, allowing the reduction of costs and time associated to extensive test programmes. Comparing with strap repairs, scarf repairs have the advantages of a higher efficiency and the absence of aerodynamic disturbance. This work reports on a numerical study of the tensile behaviour of three-dimensional scarf repairs in carbon-epoxy structures, using a ductile adhesive (Araldite® 2015). The finite elements analysis was performed in ABAQUS® and Cohesive Zone Modelling was used for the simulation of damage onset and growth in the adhesive layer. Trapezoidal cohesive laws in each pure mode were used to account for the ductility of the specific adhesive mentioned. A parametric study was performed on the repair width and scarf angle. The use of over-laminating plies covering the repaired region at the outer or both repair surfaces was also tested as an attempt to increase the repairs efficiency. The obtained results allowed the proposal of design principles for repairing composite structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robotica 2012: 12th International Conference on Autonomous Robot Systems and Competitions April 11, 2012, Guimarães, Portugal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work an adaptive modeling and spectral estimation scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for speech enhancement. Both speech and noise signals are modeled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. The model parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The speech enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. This approach is particularly useful as a pre-processing module for parametric based speech recognition systems that rely on spectral time dependent models. The system performance has been evaluated by a set of human listeners and by spectral distances. In both cases the use of this pre-processing module has led to improved results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work an adaptive filtering scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for Hidden Markov Model (HMM) based speech synthesis quality enhancement. The objective is to improve signal smoothness across HMMs and their related states and to reduce artifacts due to acoustic model's limitations. Both speech and artifacts are modelled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. Themodel parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The quality enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. The system's performance has been evaluated using mean opinion score tests and the proposed technique has led to improved results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.