4 resultados para health impact assessment
em Instituto Politécnico do Porto, Portugal
Resumo:
In life cycle impact assessment (LCIA) models, the sorption of the ionic fraction of dissociating organic chemicals is not adequately modeled because conventional non-polar partitioning models are applied. Therefore, high uncertainties are expected when modeling the mobility, as well as the bioavailability for uptake by exposed biota and degradation, of dissociating organic chemicals. Alternative regressions that account for the ionized fraction of a molecule to estimate fate parameters were applied to the USEtox model. The most sensitive model parameters in the estimation of ecotoxicological characterization factors (CFs) of micropollutants were evaluated by Monte Carlo analysis in both the default USEtox model and the alternative approach. Negligible differences of CFs values and 95% confidence limits between the two approaches were estimated for direct emissions to the freshwater compartment; however the default USEtox model overestimates CFs and the 95% confidence limits of basic compounds up to three orders and four orders of magnitude, respectively, relatively to the alternative approach for emissions to the agricultural soil compartment. For three emission scenarios, LCIA results show that the default USEtox model overestimates freshwater ecotoxicity impacts for the emission scenarios to agricultural soil by one order of magnitude, and larger confidence limits were estimated, relatively to the alternative approach.
Resumo:
The environmental management domain is vast and encompasses many identifiable activities: impact assessment, planning, project evaluation, etc. In particular, this paper focusses on the modelling of the project evaluation activity. The environmental decision support system under development aims to provide assistance to project developers in the selection of adequate locations, guaranteeing the compliance with the applicable regulations and the existing development plans as well as satisfying the specified project requirements. The inherent multidisciplinarity features of this activity lead to the adoption of the Multi-Agent paradigm, and, in particular, to the modelling of the involved agencies as a community of cooperative autonomous agents, where each agency contributes with its share of problem solving to the final system’s recommendation. To achieve this behaviour the many conclusions of the individual agencies have to be justifiably accommodated: not only they may differ, but can be interdependent, complementary, irreconcilable, or simply, independent. We propose different solutions (involving both local and global consistency) to support the adequate merge of the distinct perspectives that inevitably arise during this type of decision making.
Resumo:
In this work, kriging with covariates is used to model and map the spatial distribution of salinity measurements gathered by an autonomous underwater vehicle in a sea outfall monitoring campaign aiming to distinguish the effluent plume from the receiving waters and characterize its spatial variability in the vicinity of the discharge. Four different geostatistical linear models for salinity were assumed, where the distance to diffuser, the west-east positioning, and the south-north positioning were used as covariates. Sample variograms were fitted by the Mat`ern models using weighted least squares and maximum likelihood estimation methods as a way to detect eventual discrepancies. Typically, the maximum likelihood method estimated very low ranges which have limited the kriging process. So, at least for these data sets, weighted least squares showed to be the most appropriate estimation method for variogram fitting. The kriged maps show clearly the spatial variation of salinity, and it is possible to identify the effluent plume in the area studied. The results obtained show some guidelines for sewage monitoring if a geostatistical analysis of the data is in mind. It is important to treat properly the existence of anomalous values and to adopt a sampling strategy that includes transects parallel and perpendicular to the effluent dispersion.
Resumo:
Este trabalho teve como objetivo avaliar e comparar os impactes ambientais da produção do butanol considerando três processos produtivos: um que usa fontes fósseis e dois que usam fontes renováveis, nomeadamente palha de trigo e milho. Para o primeiro caso considerouse o processo oxo e os restantes usaram o processo de produção ABE (acetona, butanol e etanol). Na primeira etapa estudaram-se e descreveram-se os diferentes processos referidos. A análise do ciclo de vida foi depois aplicada efetuando as quatro fases nomeadamente definição do âmbito e objetivo, inventário, avaliação de impactes e interpretação dos resultados obtidos. O inventário foi efetuado tendo em conta a bibliografia existente sobre estes processos e com o auxílio da base de dados Ecoinvent Versão3 Database™. Na avaliação de impactes utilizou-se o método Impact 2002 + (Endpoint). Concluiu-se que a produção do butanol pelo processo ABE utilizando o milho é a que apresenta maior impacte ambiental e a que produção do butanol pelo processo ABE usando a palha de trigo é a que apresenta um menor impacte ambiental, quando o processo de alocação foi efetuado tendo em conta as massas de todos os produtos produzidos em cada processo. Foi efetuada uma análise de sensibilidade para a produção de butanol usando palha de trigo e milho relativa aos dados de menor qualidade. No processo da palha de trigo fez-se variar a quantidade de material enviado para a digestão anaeróbia e a quantidade de efluente produzida. No processo relativo ao milho apenas se fez variar a quantidade de efluente produzida. As variações tiveram um efeito pouco significativo (<1,3%) no impacte global. Por fim, efetuou-se o cálculo dos impactes considerando uma alocação económica que foi executada tendo em conta os preços de venda para o ano 2013 na Europa, para os produtos produzidos pelos diferentes processos. Considerando o valor económico verificou-se um aumento do peso relativo ao butanol, o que fez aumentar significativamente o impacte ambiental. Isto deve-se em grande parte ao baixo valor económico dos gases formados nos processos de fermentação. Se na alocação por massa for retirada a massa destes gases os resultados obtidos são similares nos dois tipos de alocação.