4 resultados para genomic walking
em Instituto Politécnico do Porto, Portugal
Resumo:
Purpose: Because walking is highly recommended for prevention and treatment of obesity and some of its biomechanical aspects are not clearly understood for overweight people, we compared the absolute and normalized ground reaction forces (GRF), plantar pressures, and temporal parameters of normal-weight and overweight participants during overground walking. Method: A force plate and an in-shoe pressure system were used to record GRF, plantar pressures (foot divided in 10 regions), and temporal parameters of 17 overweight adults and 17 gender-matched normal-weight adults while walking. Results: With high effect sizes, the overweight participants showed higher absolute medial-lateral and vertical GRF and pressure peaks in the central rearfoot, lateral midfoot, and lateral and central forefoot. However, analyzing normalized (scaled to body weight) data, the overweight participants showed lower vertical and anterior-posterior GRF and lower pressure peaks in the medial rearfoot and hallux, but the lateral forefoot peaks continued to be greater compared with normal-weight participants. Time of occurrence of medial-lateral GRF and pressure peaks in the midfoot occurred later in overweight individuals. Conclusions: The overweight participants adapted their gait pattern to minimize the consequences of the higher vertical and propulsive GRF in their musculoskeletal system. However, they were not able to improve their balance as indicated by medial-lateral GRF. The overweight participants showed higher absolute pressure peaks in 4 out of 10 foot regions. Furthermore, the normalized data suggest that the lateral forefoot in overweight adults was loaded more than the proportion of their extra weight, while the hallux and medial rearfoot were seemingly protected.
Resumo:
This paper studies periodic gaits of multi-legged locomotion systems based on dynamic models. The purpose is to determine the system performance during walking and the best set of locomotion variables. For that objective the prescribed motion of the robot is completely characterized in terms of several locomotion variables such as gait, duty factor, body height, step length, stroke pitch, foot clearance, legs link lengths, foot-hip offset, body and legs mass and cycle time. In this perspective, we formulate three performance measures of the walking robot namely, the mean absolute energy, the mean power dispersion and the mean power lost in the joint actuators per walking distance. A set of model-based experiments reveals the influence of the locomotion variables in the proposed indices.
Resumo:
This paper presents the dynamic analysis of robotic biped systems. The main goal is to gain insight into the phenomena of walking and to evaluate its performance. In this study, we propose three methods to quantitatively measure the dynamic efficiency of walking: energy analysis, perturbation analysis and lowpass frequency analysis. In order to accomplish this goal, the prescribed motion of the biped is completely characterised in terms of a set of locomotion variables, namely: step lenght, hip height, hip ripple, hip offset, foot clearance and link lenghts. based on these variables and their influence, the performance measures aer discussed and the results compared with those observed in nature.
Resumo:
Introduction: Lesions at ipsilateral systems related to postural control at ipsilesional side, may justify the lower performance of stroke subjects during walking. Purpose: To analyse bilateral ankle antagonist coactivation during double-support in stroke subjects. Methods: Sixteen (8 females; 8 males) subjects with a first isquemic stroke, and twenty two controls (12 females; 10 males) participated in this study. The double support phase was assessed through ground reaction forces and electromyography of ankle muscles was assessed in both limbs. Results: Ipsilesional limb presented statistical significant differences from control when assuming specific roles during double support, being the tibialis anterior and soleus pair the one in which this atypical behavior was more pronounced. Conclusion: The ipsilesional limb presents a dysfunctional behavior when a higher postural control activity was demanded.