7 resultados para genetic evolution

em Instituto Politécnico do Porto, Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an optimization approach for the job shop scheduling problem (JSSP). The JSSP is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. The proposed approach is based on a genetic algorithm technique. The scheduling rules such as SPT and MWKR are integrated into the process of genetic evolution. The chromosome representation of the problem is based on random keys. The schedules are constructed using a priority rule in which the priorities and delay times of the operations are defined by the genetic algorithm. Schedules are constructed using a procedure that generates parameterized active schedules. After a schedule is obtained a local search heuristic is applied to improve the solution. The approach is tested on a set of standard instances taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper formulates a genetic algorithm that evolves two types of objects in a plane. The fitness function promotes a relationship between the objects that is optimal when some kind of interface between them occurs. Furthermore, the algorithm adopts an hexagonal tessellation of the two-dimensional space for promoting an efficient method of the neighbour modelling. The genetic algorithm produces special patterns with resemblances to those revealed in percolation phenomena or in the symbiosis found in lichens. Besides the analysis of the spacial layout, a modelling of the time evolution is performed by adopting a distance measure and the modelling in the Fourier domain in the perspective of fractional calculus. The results reveal a consistent, and easy to interpret, set of model parameters for distinct operating conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractional calculus (FC) is currently being applied in many areas of science and technology. In fact, this mathematical concept helps the researches to have a deeper insight about several phenomena that integer order models overlook. Genetic algorithms (GA) are an important tool to solve optimization problems that occur in engineering. This methodology applies the concepts that describe biological evolution to obtain optimal solution in many different applications. In this line of thought, in this work we use the FC and the GA concepts to implement the electrical fractional order potential. The performance of the GA scheme, and the convergence of the resulting approximation, are analyzed. The results are analyzed for different number of charges and several fractional orders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetic. The basic concept of GAs is designed to simulate processes in natural system necessary for evolution, specifically those that follow the principles first laid down by Charles Darwin of survival of the fittest. On the other hand, Particle swarm optimization (PSO) is a population based stochastic optimization technique inspired by social behavior of bird flocking or fish schooling. PSO shares many similarities with evolutionary computation techniques such as GAs. The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. PSO is attractive because there are few parameters to adjust. This paper presents hybridization between a GA algorithm and a PSO algorithm (crossing the two algorithms). The resulting algorithm is applied to the synthesis of combinational logic circuits. With this combination is possible to take advantage of the best features of each particular algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work addresses the signal propagation and the fractional-order dynamics during the evolution of a genetic algorithm (GA). In order to investigate the phenomena involved in the GA population evolution, the mutation is exposed to excitation perturbations during some generations and the corresponding fitness variations are evaluated. Three distinct fitness functions are used to study their influence in the GA dynamics. The input and output signals are studied revealing a fractional-order dynamic evolution, characteristic of a long-term system memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extended-spectrum β-lactamases (ESBLs) prevalence was studied in the north of Portugal, among 193 clinical isolates belonging to citizens in a district in the boundaries between this country and Spain from a total of 7529 clinical strains. In the present study we recovered some members of Enterobacteriaceae family, producing ESBL enzymes, including Escherichia coli (67.9%), Klebsiella pneumoniae (30.6%), Klebsiella oxytoca (0.5%), Enterobacter aerogenes (0.5%), and Citrobacter freundii (0.5%). β-lactamases genes blaTEM, blaSHV, and blaCTX-M were screened by polymerase chain reaction (PCR) and sequencing approaches. TEM enzymes were among the most prevalent types (40.9%) followed by CTX-M (37.3%) and SHV (23.3%). Among our sample of 193 ESBL-producing strains 99.0% were resistant to the fourth-generation cephalosporin cefepime. Of the 193 isolates 81.3% presented transferable plasmids harboring genes. Clonal studies were performed by PCR for the enterobacterial repetitive intragenic consensus (ERIC) sequences. This study reports a high diversity of genetic patterns. Ten clusters were found for E. coli isolates and five clusters for K. pneumoniae strains by means of ERIC analysis. In conclusion, in this country, the most prevalent type is still the TEM-type, but CTX-M is growing rapidly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteins secreted to the extracellular environment or to the periphery of the cell envelope, the secretome, play essential roles in foraging, antagonistic and mutualistic interactions. We hypothesize that arms races, genetic conflicts and varying selective pressures should lead to the rapid change of sequences and gene repertoires of the secretome. The analysis of 42 bacterial pan-genomes shows that secreted, and especially extracellular proteins, are predominantly encoded in the accessory genome, i.e. among genes not ubiquitous within the clade. Genes encoding outer membrane proteins might engage more frequently in intra-chromosomal gene conversion because they are more often in multi-genic families. The gene sequences encoding the secretome evolve faster than the rest of the genome and in particular at non-synonymous positions. Cell wall proteins in Firmicutes evolve particularly fast when compared with outer membrane proteins of Proteobacteria. Virulence factors are over-represented in the secretome, notably in outer membrane proteins, but cell localization explains more of the variance in substitution rates and gene repertoires than sequence homology to known virulence factors. Accordingly, the repertoires and sequences of the genes encoding the secretome change fast in the clades of obligatory and facultative pathogens and also in the clades of mutualists and free-living bacteria. Our study shows that cell localization shapes genome evolution. In agreement with our hypothesis, the repertoires and the sequences of genes encoding secreted proteins evolve fast. The particularly rapid change of extracellular proteins suggests that these public goods are key players in bacterial adaptation.