10 resultados para fractional evolution equation

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractional calculus generalizes integer order derivatives and integrals. During the last half century a considerable progress took place in this scientific area. This paper addresses the evolution and establishes an assertive measure of the research development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This manuscript analyses the data generated by a Zero Length Column (ZLC) diffusion experimental set-up, for 1,3 Di-isopropyl benzene in a 100% alumina matrix with variable particle size. The time evolution of the phenomena resembles those of fractional order systems, namely those with a fast initial transient followed by long and slow tails. The experimental measurements are best fitted with the Harris model revealing a power law behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper an algorithm for the calculation of the root locus of fractional linear systems is presented. The proposed algorithm takes advantage of present day computational resources and processes directly the characteristic equation, avoiding the limitations revealed by standard methods. The results demonstrate the good performance for different types of expressions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the dynamics of a system composed of a collection of particles that exhibit collisions between them. Several entropy measures and different impact conditions of the particles are tested. The results reveal a Power Law evolution both of the system energy and the entropy measures, typical in systems having fractional dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractional calculus (FC) is currently being applied in many areas of science and technology. In fact, this mathematical concept helps the researches to have a deeper insight about several phenomena that integer order models overlook. Genetic algorithms (GA) are an important tool to solve optimization problems that occur in engineering. This methodology applies the concepts that describe biological evolution to obtain optimal solution in many different applications. In this line of thought, in this work we use the FC and the GA concepts to implement the electrical fractional order potential. The performance of the GA scheme, and the convergence of the resulting approximation, are analyzed. The results are analyzed for different number of charges and several fractional orders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a novel method for controlling the convergence rate of a particle swarm optimization algorithm using fractional calculus (FC) concepts. The optimization is tested for several well-known functions and the relationship between the fractional order velocity and the convergence of the algorithm is observed. The FC demonstrates a potential for interpreting evolution of the algorithm and to control its convergence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fractal geometry is used to model of a naturally fractured reservoir and the concept of fractional derivative is applied to the diffusion equation to incorporate the history of fluid flow in naturally fractured reservoirs. The resulting fractally fractional diffusion (FFD) equation is solved analytically in the Laplace space for three outer boundary conditions. The analytical solutions are used to analyze the response of a naturally fractured reservoir considering the anomalous behavior of oil production. Several synthetic examples are provided to illustrate the methodology proposed in this work and to explain the diffusion process in fractally fractured systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We agree with Ling-Yun et al. [5] and Zhang and Duan comments [2] about the typing error in equation (9) of the manuscript [8]. The correct formula was initially proposed in [6, 7]. The formula adopted in our algorithms discussed in our papers [1, 3, 4, 8] is, in fact, the following: ...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theory of free vibrations of discrete fractional order (FO) systems with a finite number of degrees of freedom (dof) is developed. A FO system with a finite number of dof is defined by means of three matrices: mass inertia, system rigidity and FO elements. By adopting a matrix formulation, a mathematical description of FO discrete system free vibrations is determined in the form of coupled fractional order differential equations (FODE). The corresponding solutions in analytical form, for the special case of the matrix of FO properties elements, are determined and expressed as a polynomial series along time. For the eigen characteristic numbers, the system eigen main coordinates and the independent eigen FO modes are determined. A generalized function of visoelastic creep FO dissipation of energy and generalized forces of system with no ideal visoelastic creep FO dissipation of energy for generalized coordinates are formulated. Extended Lagrange FODE of second kind, for FO system dynamics, are also introduced. Two examples of FO chain systems are analyzed and the corresponding eigen characteristic numbers determined. It is shown that the oscillatory phenomena of a FO mechanical chain have analogies to electrical FO circuits. A FO electrical resistor is introduced and its constitutive voltage–current is formulated. Also a function of thermal energy FO dissipation of a FO electrical relation is discussed.