10 resultados para fine particles, Positive Matrix Factorisation, receptor modelling
em Instituto Politécnico do Porto, Portugal
Resumo:
Due to their detrimental effects on human health, scientific interest in ultrafine particles (UFP), has been increasing but available information is far from comprehensive. Children, who represent one of the most susceptible subpopulation, spend the majority of time in schools and homes. Thus, the aim of this study is to (1) assess indoor levels of particle number concentrations (PNC) in ultrafine and fine (20–1000 nm) range at school and home environments and (2) compare indoor respective dose rates for 3- to 5-yr-old children. Indoor particle number concentrations in range of 20–1000 nm were consecutively measured during 56 d at two preschools (S1 and S2) and three homes (H1–H3) situated in Porto, Portugal. At both preschools different indoor microenvironments, such as classrooms and canteens, were evaluated. The results showed that total mean indoor PNC as determined for all indoor microenvironments were significantly higher at S1 than S2. At homes, indoor levels of PNC with means ranging between 1.09 × 104 and 1.24 × 104 particles/cm3 were 10–70% lower than total indoor means of preschools (1.32 × 104 to 1.84 × 104 particles/cm3). Nevertheless, estimated dose rates of particles were 1.3- to 2.1-fold higher at homes than preschools, mainly due to longer period of time spent at home. Daily activity patterns of 3- to 5-yr-old children significantly influenced overall dose rates of particles. Therefore, future studies focusing on health effects of airborne pollutants always need to account for children’s exposures in different microenvironments such as homes, schools, and transportation modes in order to obtain an accurate representation of children overall exposure.
Resumo:
Because polycyclic aromatic hydrocarbons (PAHs) have been proven to be toxic, mutagenic, and/or carcinogenic, there is widespread interest in analyzing and evaluating exposure to PAHs in atmospheric environments influenced by different emission sources. Because traffic emissions are one of the biggest sources of fine particles, more information on carcinogenic PAHs associated with fine particles needs to be provided. Aiming to further understand the impact of traffic particulate matter (PM) on human health, this study evaluated the influence of traffic on PM10 (PM with aerodynamic diameter <10 µm) and PM2.5 (PM with aerodynamic diameter <2.5 µm), considering their concentrations and compositions in carcinogenic PAHs. Samples were collected at one site influenced by traffic emissions and at one reference site using lowvolume samplers. Analysis of PAHs was performed by microwave-assisted extraction combined with liquid chromatography (MAE-LC); 17 PAHs, including 9 carcinogenic ones, were quantified. At the site influenced by traffic emissions, PM10 and PM2.5 concentrations were, respectively, 380 and 390% higher than at the background site. When influenced by traffic emissions, the total concentration of nine carcinogenic compounds (naphthalene, chrysene, benzo(a)anthracene, benzo(b) fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, and dibenzo(a,l)pyrene) was increased by 2400 and 3000% in PM10 and PM2.5, respectively; these nine carcinogenic compounds represented 68 and 74% of total PAHs (ƩPAHs) for PM10 and PM2.5, respectively. All PAHs, including the carcinogenic compounds, were mainly present in fine particles. Considering the strong influence of these fine particles on human health, these conclusions are relevant for the development of strategies to protect public health.
Resumo:
Because of the mutagenic and/or carcinogenic properties, Polycyclic Aromatic Hydrocarbons (PAH), have a direct impact on human population. Consequently, there is a widespread interest in analysing and evaluating the exposure to PAH in different indoor environments, influenced by different emission sources. The information on indoor PAH is still limited, mainly in terms of PAH distribution in indoor particles of different sizes; thus, this study evaluated the influence of tobacco smoke on PM10 and PM2.5 characteristics, namely on their PAH compositions, with further aim to understand the negative impact of tobacco smoke on human health. Samples were collected at one site influenced by tobacco smoke and at one reference (non-smoking) site using low-volume samplers; the analyses of 17 PAH were performed by Microwave Assisted Extraction combined with Liquid Chromatography (MAE–LC). At the site influenced by tobacco smoke PM concentrations were higher 650% for PM10, and 720% for PM2.5. When influenced by smoking, 4 ring PAH (fluoranthene, pyrene, and chrysene) were the most abundant PAH, with concentrations 4600–21 000% and 5100–20 800% higher than at the reference site for PM10 and PM2.5, respectively, accounting for 49% of total PAH (SPAH). Higher molecular weight PAH (5–6 rings) reached concentrations 300–1300% and 140–1700% higher for PM10 and PM2.5, respectively, at the site influenced by tobacco smoke. Considering 9 carcinogenic PAH this increase was 780% and 760% in PM10 and PM2.5, respectively, indicating the strong potential risk for human health. As different composition profiles of PAH in indoor PM were obtained for reference and smoking sites, those 9 carcinogens represented at the reference site 84% and 86% of SPAH in PM10 and PM2.5, respectively, and at the smoking site 56% and 55% of SPAH in PM10 and PM2.5, respectively. All PAH (including the carcinogenic ones) were mainly present in fine particles, which corresponds to a strong risk for cardiopulmonary disease and lung cancer; thus, these conclusions are relevant for the development of strategies to protect public health.
Resumo:
Hospitals are considered as a special and important type of indoor public place where air quality has significant impacts on potential health outcomes. Information on indoor air quality of these environments, concerning exposures to particulate matter (PM) and related toxicity, is limited though. This work aims to evaluate risks associated with inhalation exposure to ten toxic metals and chlorine (As, Ni, Cr, Cd, Pb, Mn, Se, Ba, Al, Si, and Cl) in coarse (PM2.5–10) and fine (PM2.5) particles in a Portuguese hospital in comparison with studies representative of other countries. Samples were collected during 1 month in one urban hospital; elemental PM characterization was determined by proton-induced X-ray emission. Noncarcinogenic and carcinogenic risks were assessed according to the methodology provided by the United States Environmental Protection Agency (USEPA; Region III Risk-Based Concentration Table) for three different age categories of hospital personnel (adults, >20, and <65 years) and patients (considering nine different age groups, i.e., children of 1–3 years to seniors of >65 years). The estimated noncarcinogenic risks due to occupational inhalation exposure to PM2.5-bound metals ranged from 5.88×10−6 for Se (adults, 55–64 years) to 9.35×10−1 for As (adults, 20–24 years) with total noncarcinogenic risks (sum of all metals) above the safe level for all three age categories. As and Cl (the latter due to its high abundances) were the most important contributors (approximately 90 %) to noncarcinogenic risks. For PM2.5–10, noncarcinogenic risks of all metals were acceptable to all age groups. Concerning carcinogenic risks, for Ni and Pb, they were negligible (<1×10−6) in both PM fractions for all age groups of hospital personnel; potential risks were observed for As and Cr with values in PM2.5 exceeding (up to 62 and 5 times, respectively) USEPA guideline across all age groups; for PM2.5–10, increased excess risks of As and Cr were observed particularly for long-term exposures (adults, 55–64 years). Total carcinogenic risks highly (up to 67 times) exceeded the recommended level for all age groups, thus clearly showing that occupational exposure to metals in fine particles pose significant risks. If the extensive working hours of hospital medical staff were considered, the respective noncarcinogenic and carcinogenic risks were increased, the latter for PM2.5 exceeding the USEPA cumulative guideline of 10−4. For adult patients, the estimated noncarcinogenic and carcinogenic risks were approximately three times higher than for personnel, with particular concerns observed for children and adolescents.
Resumo:
A 3D-mirror synthetic receptor for ciprofloxacin host–guest interactions and potentiometric transduction is presented. The host cavity was shaped on a polymeric surface assembled with methacrylic acid or 2-vinyl pyridine monomers by radical polymerization. Molecularly imprinted particles were dispersed in 2-nitrophenyl octyl ether and entrapped in a poly(vinyl chloride) matrix. The sensors exhibited a near-Nernstian response in steady state evaluations. Slopes and detection limits ranged from 26.8 to 50.0mVdecade−1 and 1.0×10−5 to 2.7×10−5 mol L−1, respectively. Good selectivity was observed for trimethoprim, enrofloxacin, tetracycline, cysteine, galactose, hydroxylamine, creatinine, ammonium chloride, sucrose, glucose, sulphamerazine and sulfadiazine. The sensors were successfully applied to the determination of ciprofloxacin concentrations in fish and in pharmaceuticals. The method presented offered the advantages of simplicity, accuracy, applicability to colored and turbid samples and automation feasibility, as well as confirming the use of molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction.
Resumo:
This study aimed to characterize air pollution and the associated carcinogenic risks of polycyclic aromatic hydrocarbon (PAHs) at an urban site, to identify possible emission sources of PAHs using several statistical methodologies, and to analyze the influence of other air pollutants and meteorological variables on PAH concentrations.The air quality and meteorological data were collected in Oporto, the second largest city of Portugal. Eighteen PAHs (the 16 PAHs considered by United States Environment Protection Agency (USEPA) as priority pollutants, dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were collected daily for 24 h in air (gas phase and in particles) during 40 consecutive days in November and December 2008 by constant low-flow samplers and using polytetrafluoroethylene (PTFE) membrane filters for particulate (PM10 and PM2.5 bound) PAHs and pre-cleaned polyurethane foam plugs for gaseous compounds. The other monitored air pollutants were SO2, PM10, NO2, CO, and O3; the meteorological variables were temperature, relative humidity, wind speed, total precipitation, and solar radiation. Benzo[a]pyrene reached a mean concentration of 2.02 ngm−3, surpassing the EU annual limit value. The target carcinogenic risks were equal than the health-based guideline level set by USEPA (10−6) at the studied site, with the cancer risks of eight PAHs reaching senior levels of 9.98×10−7 in PM10 and 1.06×10−6 in air. The applied statistical methods, correlation matrix, cluster analysis, and principal component analysis, were in agreement in the grouping of the PAHs. The groups were formed according to their chemical structure (number of rings), phase distribution, and emission sources. PAH diagnostic ratios were also calculated to evaluate the main emission sources. Diesel vehicular emissions were the major source of PAHs at the studied site. Besides that source, emissions from residential heating and oil refinery were identified to contribute to PAH levels at the respective area. Additionally, principal component regression indicated that SO2, NO2, PM10, CO, and solar radiation had positive correlation with PAHs concentrations, while O3, temperature, relative humidity, and wind speed were negatively correlated.
Resumo:
This manuscript analyses the data generated by a Zero Length Column (ZLC) diffusion experimental set-up, for 1,3 Di-isopropyl benzene in a 100% alumina matrix with variable particle size. The time evolution of the phenomena resembles those of fractional order systems, namely those with a fast initial transient followed by long and slow tails. The experimental measurements are best fitted with the Harris model revealing a power law behavior.
Resumo:
The ecotoxicological response of the living organisms in an aquatic system depends on the physical, chemical and bacteriological variables, as well as the interactions between them. An important challenge to scientists is to understand the interaction and behaviour of factors involved in a multidimensional process such as the ecotoxicological response.With this aim, multiple linear regression (MLR) and principal component regression were applied to the ecotoxicity bioassay response of Chlorella vulgaris and Vibrio fischeri in water collected at seven sites of Leça river during five monitoring campaigns (February, May, June, August and September of 2006). The river water characterization included the analysis of 22 physicochemical and 3 microbiological parameters. The model that best fitted the data was MLR, which shows: (i) a negative correlation with dissolved organic carbon, zinc and manganese, and a positive one with turbidity and arsenic, regarding C. vulgaris toxic response; (ii) a negative correlation with conductivity and turbidity and a positive one with phosphorus, hardness, iron, mercury, arsenic and faecal coliforms, concerning V. fischeri toxic response. This integrated assessment may allow the evaluation of the effect of future pollution abatement measures over the water quality of Leça River.
Resumo:
A 3D-mirror synthetic receptor for ciprofloxacin host–guest interactions and potentiometric transduction is presented. The host cavity was shaped on a polymeric surface assembled with methacrylic acid or 2-vinyl pyridine monomers by radical polymerization. Molecularly imprinted particles were dispersed in 2-nitrophenyl octyl ether and entrapped in a poly(vinyl chloride) matrix. The sensors exhibited a near-Nernstian response in steady state evaluations. Slopes and detection limits ranged from 26.8 to 50.0 mV decade−1 and 1.0 × 10−5 to 2.7 × 10−5 mol L−1, respectively. Good selectivity was observed for trimethoprim, enrofloxacin, tetracycline, cysteine, galactose, hydroxylamine, creatinine, ammonium chloride, sucrose, glucose, sulphamerazine and sulfadiazine. The sensors were successfully applied to the determination of ciprofloxacin concentrations in fish and in pharmaceuticals. The method presented offered the advantages of simplicity, accuracy, applicability to colored and turbid samples and automation feasibility, as well as confirming the use of molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction.
Resumo:
In this study, the behaviour of two structural adhesives modified with thermally expandable particles (TEPs) was investigated as a preliminary study for further investigations on the potential of TEPs in adhesive joints. Tensile bulk tests were performed to get the tensile properties of the adhesives and TEPs-modified adhesives. In order to determine the expansion temperature of the particles while encapsulated in these particular adhesive systems, the variation of the volume of adhesive samples modified with different TEPs concentration as a function of temperature was measured. Further, the possibility of any chemical interactions between TEPs and adhesives matrix in the TEPs-modified specimens was verified by a Fourier transform infrared spectroscopy analysis. Finally, the fracture surfaces of the unmodified and TEPs-modified specimens, as well as the dispersion and the morphology of the particles, were examined by a scanning electron microscopy analysis. It was found that the stiffness of the TEPs-modified adhesives is not affected by incorporation of TEPs in the adhesives matrix, while the tensile yield strength decreased by increasing the wt% TEPs content. In applications of such particular materials (TEPs-modified adhesives), the temperature should be controlled to stay between 90°C and 120°C in order to obtain the highest expansion ratio. At a lower temperature, not all the particles will expand, and above, the TEPs will deteriorate and as a result the TEPs-modified adhesives will deteriorate.