4 resultados para ferrous sulphate
em Instituto Politécnico do Porto, Portugal
Resumo:
An analytical multiresidue method for the simultaneous determination of seven pesticides in fresh vegetable samples, namely, courgette (Cucurbita pepo), cucumber (Cucumis sativus), lettuce (Lactuca sativa, Romaine and Iceberg varieties) and peppers (Capsicum sp.) is described. The procedure, based on microwave-assisted extraction (MAE) and analysis by liquid chromatography– photodiode array (LC–PDA) detection was applied to four carbamates (carbofuran, carbaryl, chlorpropham and EPTC) and three urea pesticides (monolinuron, metobromuron and linuron). Extraction solvent and the addition of anhydrous sodium sulphate to fresh vegetable homogenate before MAE were the parameters optimised for each commodity. Recovery studies were performed using spiked samples in the range 250–403 µgkg- 1 in each pesticide. The pesticide residues were extracted using 20mL acetonitrile at 60 ºC, for 10 min. Acceptable recoveries and RSDs were attained (overall average recovery of 77.2% and RSDs are lower than 11%). Detection limits ranged between 5.8 µgkg- 1 for carbaryl to 12.3 µgkg- 1 for carbofuran. The analytical protocol was applied for quality control of 41 fresh vegetable samples bought in Oporto Metropolitan Area (North Portugal). None of the samples contained any detectable amounts of the studied compounds.
Resumo:
Microwave-assisted extraction (MAE) of agar from Gracilaria vermiculophylla, produced in an integrated multitrophic aquaculture (IMTA) system, from Ria de Aveiro (northwestern Portugal), was tested and optimized using response surface methodology. The influence of the MAE operational parameters (extraction time, temperature, solvent volume and stirring speed) on the physical and chemical properties of agar (yield, gel strength, gelling and melting temperatures, as well as, sulphate and 3,6-anhydro-Lgalactose contents) was evaluated in a 2^4 orthogonal composite design. The quality of the extracted agar compared favorably with the attained using traditional extraction (2 h at 85ºC) while reducing drastically extraction time, solvent consumption and waste disposal requirements. Agar MAE optimum results were: an yield of 14.4 ± 0.4%, a gel strength of 1331 ± 51 g/cm2, 40.7 ± 0.2 _C gelling temperature, 93.1 ± 0.5ºC melting temperature, 1.73 ± 0.13% sulfate content and 39.4 ± 0.3% 3,6-anhydro-L-galactose content. Furthermore, this study suggests the feasibility of the exploitation of G. vermiculophylla grew in IMTA systems for agar production.
Resumo:
Human chorionic gonadotropin (hCG) is a key diagnostic marker of pregnancy and an important biomarker for cancers in the prostate, ovaries and bladder and therefore of great importance in diagnosis. For this purpose, a new immunosensor of screen-printed electrodes (SPEs) is presented here. The device was fabricated by introducing a polyaniline (PANI) conductive layer, via in situ electropolymerization of aniline, onto a screen-printed graphene support. The PANI-coated graphene acts as the working electrode of a three terminal electrochemical sensor. The working electrode is functionalised with anti-hCG, by means of a simple process that enabled oriented antibody binding to the PANI layer. The antibody was attached to PANI following activation of the –COOH group at the Fc terminal. Functionalisation of the electrode was analysed and optimized using Electrochemical Impedance Spectroscopy (EIS). Chemical modification of the surface was characterised using Fourier transform infrared, and Raman spectroscopy with confocal microscopy. The graphene–SPE–PANI devices displayed linear responses to hCG in EIS assays from 0.001 to 50 ng mL−1 in real urine, with a detection limit of 0.286 pg mL−1. High selectivity was observed with respect to the presence of the constituent components of urine (urea, creatinine, magnesium chloride, calcium chloride, sodium dihydrogen phosphate, ammonium chloride, potassium sulphate and sodium chloride) at their normal levels, with a negligible sensor response to these chemicals. Successful detection of hCG was also achieved in spiked samples of real urine from a pregnant woman. The immunosensor developed is a promising tool for point-of-care detection of hCG, due to its excellent detection capability, simplicity of fabrication, low-cost, high sensitivity and selectivity.
Resumo:
Using low cost portable devices that enable a single analytical step for screening environmental contaminants is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes that were to be disposed of and by choosing as sensory element a low cost material offering specific response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being dangerous toxins produced by cyanobacteria released into water bodies. The sensory element was a plastic antibody designed by surface imprinting with carefully selected monomers to ensure a specific response. These were designed on the wall of carbon nanotubes, taking advantage of their exceptional electrical properties. The stereochemical ability of the sensory material to detect MCs was checked by preparing blank materials where the imprinting stage was made without the template molecule. The novel sensory material for MCs was introduced in a polymeric matrix and evaluated against potentiometric measurements. Nernstian response was observed from 7.24 × 10−10 to 1.28 × 10−9 M in buffer solution (10 mM HEPES, 150 mM NaCl, pH 6.6), with average slopes of −62 mVdecade−1 and detection capabilities below 1 nM. The blank materials were unable to provide a linear response against log(concentration), showing only a slight potential change towards more positive potentials with increasing concentrations (while that ofthe plastic antibodies moved to more negative values), with a maximum rate of +33 mVdecade−1. The sensors presented good selectivity towards sulphate, iron and ammonium ions, and also chloroform and tetrachloroethylene (TCE) and fast response (<20 s). This concept was successfully tested on the analysis of spiked environmental water samples. The sensors were further applied onto recycled chips, comprehending one site for the reference electrode and two sites for different selective membranes, in a biparametric approach for “in situ” analysis.