17 resultados para feeding programs
em Instituto Politécnico do Porto, Portugal
Resumo:
Power systems have been suffering huge changes mainly due to the substantial increase of distributed generation and to the operation in competitive environments. Virtual power players can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. Resource management gains an increasing relevance in this competitive context, while demand side active role provides managers with increased demand elasticity. This makes demand response use more interesting and flexible, giving rise to a wide range of new opportunities.This paper proposes a methodology for managing demand response programs in the scope of virtual power players. The proposed method is based on the calculation of locational marginal prices (LMP). The evaluation of the impact of using demand response specific programs on the LMP value supports the manager decision concerning demand response use. The proposed method has been computationally implemented and its application is illustrated in this paper using a 32 bus network with intensive use of distributed generation.
Resumo:
The design and development of simulation models and tools for Demand Response (DR) programs are becoming more and more important for adequately taking the maximum advantages of DR programs use. Moreover, a more active consumers’ participation in DR programs can help improving the system reliability and decrease or defer the required investments. DemSi, a DR simulator, designed and implemented by the authors of this paper, allows studying DR actions and schemes in distribution networks. It undertakes the technical validation of the solution using realistic network simulation based on PSCAD. DemSi considers the players involved in DR actions, and the results can be analyzed from each specific player point of view.
Resumo:
In recent years, Power Systems (PS) have experimented many changes in their operation. The introduction of new players managing Distributed Generation (DG) units, and the existence of new Demand Response (DR) programs make the control of the system a more complex problem and allow a more flexible management. An intelligent resource management in the context of smart grids is of huge important so that smart grids functions are assured. This paper proposes a new methodology to support system operators and/or Virtual Power Players (VPPs) to determine effective and efficient DR programs that can be put into practice. This method is based on the use of data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 32 bus distribution network.
Resumo:
The growing importance and influence of new resources connected to the power systems has caused many changes in their operation. Environmental policies and several well know advantages have been made renewable based energy resources largely disseminated. These resources, including Distributed Generation (DG), are being connected to lower voltage levels where Demand Response (DR) must be considered too. These changes increase the complexity of the system operation due to both new operational constraints and amounts of data to be processed. Virtual Power Players (VPP) are entities able to manage these resources. Addressing these issues, this paper proposes a methodology to support VPP actions when these act as a Curtailment Service Provider (CSP) that provides DR capacity to a DR program declared by the Independent System Operator (ISO) or by the VPP itself. The amount of DR capacity that the CSP can assure is determined using data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 33 bus distribution network.
Resumo:
On this paper we present a modified regularization scheme for Mathematical Programs with Complementarity Constraints. In the regularized formulations the complementarity condition is replaced by a constraint involving a positive parameter that can be decreased to zero. In our approach both the complementarity condition and the nonnegativity constraints are relaxed. An iterative algorithm is implemented in MATLAB language and a set of AMPL problems from MacMPEC database were tested.
Resumo:
XSLT is a powerful and widely used language for transforming XML documents. However, its power and complexity can be overwhelming for novice or infrequent users, many of whom simply give up on using this language. On the other hand, many XSLT programs of practical use are simple enough to be automatically inferred from examples of source and target documents. An inferred XSLT program is seldom adequate for production usage but can be used as a skeleton of the final program, or at least as scaffolding in the process of coding it. It should be noted that the authors do not claim that XSLT programs, in general, can be inferred from examples. The aim of Vishnu—the XSLT generator engine described in this chapter—is to produce XSLT programs for processing documents similar to the given examples and with enough readability to be easily understood by a programmer not familiar with the language. The architecture of Vishnu is composed by a graphical editor and a programming engine. In this chapter, the authors focus on the editor as a GWT Web application where the programmer loads and edits document examples and pairs their content using graphical primitives. The programming engine receives the data collected by the editor and produces an XSLT program.
Resumo:
Demand response can play a very relevant role in the context of power systems with an intensive use of distributed energy resources, from which renewable intermittent sources are a significant part. More active consumers participation can help improving the system reliability and decrease or defer the required investments. Demand response adequate use and management is even more important in competitive electricity markets. However, experience shows difficulties to make demand response be adequately used in this context, showing the need of research work in this area. The most important difficulties seem to be caused by inadequate business models and by inadequate demand response programs management. This paper contributes to developing methodologies and a computational infrastructure able to provide the involved players with adequate decision support on demand response programs and contracts design and use. The presented work uses DemSi, a demand response simulator that has been developed by the authors to simulate demand response actions and programs, which includes realistic power system simulation. It includes an optimization module for the application of demand response programs and contracts using deterministic and metaheuristic approaches. The proposed methodology is an important improvement in the simulator while providing adequate tools for demand response programs adoption by the involved players. A machine learning method based on clustering and classification techniques, resulting in a rule base concerning DR programs and contracts use, is also used. A case study concerning the use of demand response in an incident situation is presented.
Resumo:
Demand response has gain increasing importance in the context of competitive electricity markets environment. The use of demand resources is also advantageous in the context of smart grid operation. In addition to the need of new business models for integrating demand response, adequate methods are necessary for an accurate determination of the consumers’ performance evaluation after the participation in a demand response event. The present paper makes a comparison between some of the existing baseline methods related to the consumers’ performance evaluation, comparing the results obtained with these methods and also with a method proposed by the authors of the paper. A case study demonstrates the application of the referred methods to real consumption data belonging to a consumer connected to a distribution network.
Resumo:
Following the deregulation experience of retail electricity markets in most countries, the majority of the new entrants of the liberalized retail market were pure REP (retail electricity providers). These entities were subject to financial risks because of the unexpected price variations, price spikes, volatile loads and the potential for market power exertion by GENCO (generation companies). A REP can manage the market risks by employing the DR (demand response) programs and using its' generation and storage assets at the distribution network to serve the customers. The proposed model suggests how a REP with light physical assets, such as DG (distributed generation) units and ESS (energy storage systems), can survive in a competitive retail market. The paper discusses the effective risk management strategies for the REPs to deal with the uncertainties of the DAM (day-ahead market) and how to hedge the financial losses in the market. A two-stage stochastic programming problem is formulated. It aims to establish the financial incentive-based DR programs and the optimal dispatch of the DG units and ESSs. The uncertainty of the forecasted day-ahead load demand and electricity price is also taken into account with a scenario-based approach. The principal advantage of this model for REPs is reducing the risk of financial losses in DAMs, and the main benefit for the whole system is market power mitigation by virtually increasing the price elasticity of demand and reducing the peak demand.
Resumo:
The positioning of the consumers in the power systems operation has been changed in the recent years, namely due to the implementation of competitive electricity markets. Demand response is an opportunity for the consumers’ participation in electricity markets. Smart grids can give an important support for the integration of demand response. The methodology proposed in the present paper aims to create an improved demand response program definition and remuneration scheme for aggregated resources. The consumers are aggregated in a certain number of clusters, each one corresponding to a distinct demand response program, according to the economic impact of the resulting remuneration tariff. The knowledge about the consumers is obtained from its demand price elasticity values. The illustrative case study included in the paper is based on a 218 consumers’ scenario.
Resumo:
The concept of demand response has drawing attention to the active participation in the economic operation of power systems, namely in the context of recent electricity markets and smart grid models and implementations. In these competitive contexts, aggregators are necessary in order to make possible the participation of small size consumers and generation units. The methodology proposed in the present paper aims to address the demand shifting between periods, considering multi-period demand response events. The focus is given to the impact in the subsequent periods. A Virtual Power Player operates the network, aggregating the available resources, and minimizing the operation costs. The illustrative case study included is based on a scenario of 218 consumers including generation sources.
Consumption Management of Air Conditioning Devices for the Participation in Demand Response Programs
Resumo:
Demand Response has been taking over the years an extreme importance. There’s a lot of demand response programs, one of them proposed in this paper, using air conditioners that could increase the power quality and decrease the spent money in many ways like: infrastructures and customers energy bill reduction. This paper proposes a method and a study on how air conditioners could integrate demand response programs. The proposed method has been modelled as an energy resources management optimization problem. This paper presents two case studies, the first one with all costumers participating and second one with some of costumers. The results obtained for both case studies have been analyzed.
Resumo:
This article describes a study that investigated the main strategic drivers that influence the implementation of sustainability/social responsibility programs. An online survey was administered to managers of Portuguese organizations with certified management systems. The findings suggest that the implementation of such programs is mainly correlated to: 1.) the approach to understanding and working toward the satisfaction of the community’s needs (in the broad sense of social responsibility); 2.) how systematically sustainability within the organization is identified and managed (e.g., pollution prevention, improved environmental performance, and compliance with the applicable environmental laws); and 3.) the degree to which the organization tries to understand the needs of the employees and works toward satisfying them. In addition to the survey, five interviews with top managers of the surveyed organizations provided some useful insights. There was no consensus on the meaning of sustainability and social responsibility: some described it as an instrumental approach for obtaining better organizational results, while others regarded it as the right thing to do (i.e., it is values driven). In all cases, however, the managers supported a kind of umbrella construct under which different size corporations use different models (for example, the Dow Jones Sustainability Index (DJSI), Global Reporting Initiative (GRI), ISO 14001 environmental management systems), although some managers reported that they simply do not know what to do. All of those surveyed agreed that the lack of a systematic approach could represent a major threat to their organization, making them willing to pay more attention and take more action on the issue of sustainability. An additional suggestion made by managers was to change from a triple bottom line (economic dimension, environmental dimension, social equity dimension) to a quadruple bottom line by adding another dimension: personal and family happiness. This fourth dimension was recognized by the Greek philosopher/thinker Aristotle (384-322 BCE) who thought of happiness as the highest good (virtue) and ultimate goal and purpose of life, achieved through living well, in harmony. Such harmony suggests a balance and a lack of excess—in other words a sustainable existence.
Resumo:
To assure enduring success, firms need to generate economic value with respect for the environment and social value. They also need to be aware of the needs and expectations of relevant stakeholders and incorporate them in their business strategies and programs. These challenges imply that engineers should take into consideration societal, health and safety,environmental and commercial issues in their professional activity. This investigation accesses the influence of firms’ environmental management programs and community involvement programs on their own employees and in the community, with a focus on small and medium companies. Based on a quantitative research, the findings suggest that firms that invest both in environmental management programs and in community involvement programs have a higher involvement of their own employees with the community, while at the same time receiving more feedback (positive, but also negative) from the community, stressing the need to pay special attention to their communication policies.