4 resultados para fat metabolism

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone is constantly being molded and shaped by the action of osteoclasts and osteoblasts. A proper equilibrium between both cell types metabolic activities is required to ensure an adequate skeletal tissue structure, and it involves resorption of old bone and formation of new bone tissue. It is reported that treatment with antiepileptic drugs (AEDs) can elicit alterations in skeletal structure, in particular in bone mineral density. Nevertheless, the knowledge regarding the effects of AEDs on bone cells are still scarce. In this context, the aim of this study was to investigate the effects of five different AEDs on human osteoclastic, osteoblastic and co-cultured cells. Osteoclastic cell cultures were established from precursor cells isolated from human peripheral blood and were characterized for tartrate-resistant acid phosphatase (TRAP) activity, number of TRAP+ multinucleated cells, presence of cells with actin rings and expressing vitronectin and calcitonin receptors and apoptosis rate. Also, the involvement of several signaling pathways on the cellular response was addressed. Osteoblastic cell cultures were obtained from femur heads of patients (25-45 years old) undergoing orthopaedic surgery procedures and were then studied for cellular proliferation/viability, ALP activity, histochemical staining of ALP and apoptosis rate. Also the expression of osteoblast-related genes and the involvement of some osteoblastogenesis-related signalling pathways on cellular response were addressed. For co-cultured cells, osteoblastic cells were firstly seeded and cultured. After that, PBMC were added to the osteoblastic cells and co-cultures were evaluated using the same osteoclast and osteoblast parameters mentioned above for the corresponding isolated cell. Cell-cultures were maintained in the absence (control) or in the presence of different AEDs (carbamazepine, gabapentin, lamotrigine, topiramate and valproic acid). All the tested drugs were able to affect osteoclastic and osteoblastic cells development, although with different profiles on their osteoclastogenic and osteoblastogenic modulation properties. Globally, the tendency was to inhibit the process. Furthermore, the signaling pathways involved in the process also seemed to be differently affected by the AEDs, suggesting that the different drugs may affect osteoclastogenesis and/or osteoblastogenesis through different mechanisms. In conclusion, the present study showed that the different AEDs had the ability to directly and indirectly modulate bone cells differentiation, shedding new light towards a better understanding of how these drugs can affect bone tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Abdominal fat is associated with metabolic disorders, leading to cardiovascular risk factors and numerous diseases. This study aimed to analyze the effect of plaster body wrap in combination with aerobic exercise on abdominal fat. Methods Nineteen female volunteers were randomly divided into intervention group (IG; n = 10) performing aerobic exercise with plaster body wrap, and control group (CG; n = 9) performing only exercise. Subcutaneous and visceral fat were measured using ultrasound; subcutaneous fat was also estimated on analysis of skinfolds and abdominal perimeters. Results At the end of the 10-sessions protocol, the IG demonstrated a significant decrease (p ≤ 0.05) in subcutaneous fat at the left anterior superior iliac spine (ASIS) level and in iliac crest perimeter measurements. A large intervention effect size strength (0.80) was found in subcutaneous fat below the navel and a moderate effect size strength on the vertical abdominal skinfold (0.62) and the perimeter of the most prominent abdominal point (0.57). Comparing the initial and final data of each group, the IG showed a significant decrease in numerous variables including visceral and subcutaneous fat above and below the navel measured by ultrasound (p ≤ 0.05). Conclusion Plaster body wrap in combination with aerobic exercise seems to be effective for abdominal fat reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epigenetic modulation is found to get involved in multiple neurobehavioral processes. It is believed that different types of environmental stimuli could alter the epigenome of the whole brain or related neural circuits, subsequently contributing to the long-lasting neural plasticity of certain behavioral phenotypes. While the maternal influence on the health of offsprings has been long recognized, recent findings highlight an alternative way for neurobehavioral phenotypes to be passed on to the next generation, i.e., through the male germ line. In this review, we focus specifically on the transgenerational modulation induced by environmental stress, drugs of abuse, and other physical or mental changes (e.g., ageing, metabolism, fear) in fathers, and recapitulate the underlying mechanisms potentially mediating the alterations in epigenome or gene expression of offsprings. Together, these findings suggest that the inheritance of phenotypic traits through male germ-line epigenome may represent the unique manner of adaptation during evolution. Hence, more attention should be paid to the paternal health, given its equivalently important role in affecting neurobehaviors of descendants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Coronary artery disease is associated with decreased levels of physical activity, contributing to increases in abdominal fat and consequently increasing metabolic risk. The innovative use of microcurrents may be an effective method to increase the lipolytic rate of abdominal adipocytes. This study aimed to investigate the effects of utilizing microcurrents in a home-based exercise program in subjects with coronary artery disease to assess changes in total, subcutaneous and visceral abdominal adipose tissue. Methods This controlled trial included 44 subjects with myocardial infarction, randomly divided into Intervention Group 1 (IG1; n = 16), Intervention Group 2 (IG2; n = 12) and Control Group (CG; n = 16). IG1 performed a specific exercise program at home during 8 weeks, and IG2 additionally used microcurrents on the abdominal region before the exercise program. All groups were given health education sessions. Computed tomography was used to evaluate abdominal, subcutaneous and visceral fat, accelerometers to measure habitual physical activity and the semi-quantitative food frequency questionnaire for dietary intake. Results After 8 weeks, IG2 showed a significantly decrease in subcutaneous fat (p ≤ 0.05) when compared to CG. Concerning visceral fat, both intervention groups showed a significant decrease in comparison to the CG (p ≤ 0.05). No significant changes were found between groups on dietary intake and habitual physical activity, except for sedentary activity that decreased significantly for IG2 in comparison with CG (p ≤ 0.05). Conclusion This specific home-based exercise program using microcurrent therapy for individuals with coronary artery disease showed improvements in visceral and subcutaneous abdominal fat.