6 resultados para expectation of soil loss map

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application of these technologies is presented as a valid option but is not yet entirely studied. This work presents the study of the remediation of ethylbenzene (EB)-contaminated soils, with different soil water and natural organic matter (NOMC) contents, using sequential SVE and BR. The obtained results allow the conclusion that: (1) SVE was sufficient to reach the cleanup goals in 63% of the experiments (all the soils with NOMC below 4%), (2) higher NOMCs led to longer SVE remediation times, (3) BR showed to be a possible and cost-effective option when EB concentrations were lower than 335 mg kgsoil −1, and (4) concentrations of EB above 438 mg kgsoil −1 showed to be inhibitory for microbial activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Every year, particularly during the summer period, the Portuguese forests are devastated by forest fire that destroys their ecosystems. So in order to prevent these forest fires, public and private authorities frequently use methods for the reduction of combustible mass as the prescribed fire and the mechanical vegetation pruning. All of these methods of prevention of forest fires alter the vegetation layer and/or soil [1-2]. This work aimed the study of the variation of some chemical characteristics of soil that suffered prescribed fire. The studied an area was located in the Serra of Cabreira (Figure 1) with 54.6 ha. Twenty sampling points were randomly selected and samples were collected with a shovel before, just after the prescribed fire, and 125 and 196 days after that event. The parameters that were studied were: pH, soil moisture, organic matter and iron, magnesium and potassium total concentration. All the analysis followed International Standard Methodologies. This work allowed to conclude that: a) after the prescribed fire; i) the pH remained practically equal to the the initial value; ii) occurred a slight increase of the average of the organic matter contents and iron total contents; b) at the end of the sampling period compared to the initial values; i) the pH didn´t change significantly; ii) the average of the contents of organic matter decreased; and iii) the average of the total contents of Fe, Mg and K increased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study the modifications that occurred in some forest soil properties after a prescribed fire. The research focused on the alterations of soil pH, soil moisture and soil organic matter content during a two-year span, from 2008 to 2009. The study site is located in Anjos, Vieira do Minho municipality, a forest site that has suffered from recurrent wildfires for several decades. Furze (Ulex, sp.), broom (Cytisus, sp.), gorse (Chamaespartum tridentatum) and a very few disperse adult pine (Pinus sylvestris) are the predominant vegetation type in the study area. The average height of this shrub vegetation is around 1.5 m. The prescribed fire was conducted by the National Forestry Authority (AFN) in November 2008. Fuzzy Boolean Nets (FBN) were used to evaluate the alteration in soil parameters when compared with adjacent spots where: i) no fire occurrence was registered since 1998; ii) fire occurrence was registered in 2008; and iii) vegetation pruning by mechanical cut was done in Spring six months prior to the prescribed fire event. Results suggest that in the particular case of the studied site, Anjos, the observed soil properties alterations cannot be related with the prescribed fire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prescribed fire is a common forest management tool used in Portugal to reduce the fuel load availability and minimize the occurrence of wildfires. In addition, the use of this technique also causes an impact to ecosystems. In this presentation we propose to illustrate some results of our project in two forest sites, both located in Northwest Portugal, where the effect of prescribed fire on soil properties were recorded during a period of 6 months. Changes in soil moisture, organic matter, soil pH and iron, were examined by Principal Component Analysis multivariate statistics technique in order to determine impact of prescribed fire on these soil properties in these two different types of soils and determine the period of time that these forest soils need to recover to their pre-fire conditions, if they can indeed recover. Although the time allocated to this study does not allow for a widespread conclusion, the data analysis clearly indicates that the pH values are positively correlated with iron values at both sites. In addition, geomorphologic differences between both sampling sites, Gramelas and Anjos, are relevant as the soils’ properties considered have shown different performances in time. The use of prescribed fire produced a lower impact in soils originated from more amended bedrock and therefore with a ticker humus covering (Gramelas) than in more rocky soils with less litter covering (Anjos) after six months after the prescribed fire occurrence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: Preferential flow and transport through macropores affect plant water use efficiency and enhance leaching of agrochemicals and the transport of colloids, thereby increasing the risk for contamination of groundwater resources. The effects of soil compaction, expressed in terms of bulk density (BD), and organic carbon (OC) content on preferential flow and transport were investigated using 150 undisturbed soil cores sampled from 15 × 15–m grids on two field sites. Both fields had loamy textures, but one site had significantly higher OC content. Leaching experiments were conducted in each core by applying a constant irrigation rate of 10 mm h−1 with a pulse application of tritium tracer. Five percent tritium mass arrival times and apparent dispersivities were derived from each of the tracer breakthrough curves and correlated with texture, OC content, and BD to assess the spatial distribution of preferential flow and transport across the investigated fields. Soils from both fields showed strong positive correlations between BD and preferential flow. Interestingly, the relationships between BD and tracer transport characteristics were markedly different for the two fields, although the relationship between BD and macroporosity was nearly identical. The difference was likely caused by the higher contents of fines and OC at one of the fields leading to stronger aggregation, smaller matrix permeability, and a more pronounced pipe-like pore system with well-aligned macropores.