4 resultados para efficient algorithm

em Instituto Politécnico do Porto, Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently simple limiting functions establishing upper and lower bounds on the Mittag-Leffler function were found. This paper follows those expressions to design an efficient algorithm for the approximate calculation of expressions usual in fractional-order control systems. The numerical experiments demonstrate the superior efficiency of the proposed method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently simple limiting functions establishing upper and lower bounds on the Mittag-Leffler function were found. This paper follows those expressions to design an efficient algorithm for the approximate calculation of expressions usual in fractional-order control systems. The numerical experiments demonstrate the superior efficiency of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent changes concerning the consumers’ active participation in the efficient management of load devices for one’s own interest and for the interest of the network operator, namely in the context of demand response, leads to the need for improved algorithms and tools. A continuous consumption optimization algorithm has been improved in order to better manage the shifted demand. It has been done in a simulation and user-interaction tool capable of being integrated in a multi-agent smart grid simulator already developed, and also capable of integrating several optimization algorithms to manage real and simulated loads. The case study of this paper enhances the advantages of the proposed algorithm and the benefits of using the developed simulation and user interaction tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Consumer-electronics systems are becoming increasingly complex as the number of integrated applications is growing. Some of these applications have real-time requirements, while other non-real-time applications only require good average performance. For cost-efficient design, contemporary platforms feature an increasing number of cores that share resources, such as memories and interconnects. However, resource sharing causes contention that must be resolved by a resource arbiter, such as Time-Division Multiplexing. A key challenge is to configure this arbiter to satisfy the bandwidth and latency requirements of the real-time applications, while maximizing the slack capacity to improve performance of their non-real-time counterparts. As this configuration problem is NP-hard, a sophisticated automated configuration method is required to avoid negatively impacting design time. The main contributions of this article are: 1) An optimal approach that takes an existing integer linear programming (ILP) model addressing the problem and wraps it in a branch-and-price framework to improve scalability. 2) A faster heuristic algorithm that typically provides near-optimal solutions. 3) An experimental evaluation that quantitatively compares the branch-and-price approach to the previously formulated ILP model and the proposed heuristic. 4) A case study of an HD video and graphics processing system that demonstrates the practical applicability of the approach.