39 resultados para dynamic response optimization
em Instituto Politécnico do Porto, Portugal
Resumo:
A função de escalonamento desempenha um papel importante nos sistemas de produção. Os sistemas de escalonamento têm como objetivo gerar um plano de escalonamento que permite gerir de uma forma eficiente um conjunto de tarefas que necessitam de ser executadas no mesmo período de tempo pelos mesmos recursos. Contudo, adaptação dinâmica e otimização é uma necessidade crítica em sistemas de escalonamento, uma vez que as organizações de produção têm uma natureza dinâmica. Nestas organizações ocorrem distúrbios nas condições requisitos de trabalho regularmente e de forma inesperada. Alguns exemplos destes distúrbios são: surgimento de uma nova tarefa, cancelamento de uma tarefa, alteração na data de entrega, entre outros. Estes eventos dinâmicos devem ser tidos em conta, uma vez que podem influenciar o plano criado, tornando-o ineficiente. Portanto, ambientes de produção necessitam de resposta imediata para estes eventos, usando um método de reescalonamento em tempo real, para minimizar o efeito destes eventos dinâmicos no sistema de produção. Deste modo, os sistemas de escalonamento devem de uma forma automática e inteligente, ser capazes de adaptar o plano de escalonamento que a organização está a seguir aos eventos inesperados em tempo real. Esta dissertação aborda o problema de incorporar novas tarefas num plano de escalonamento já existente. Deste modo, é proposta uma abordagem de otimização – Hiper-heurística baseada em Seleção Construtiva para Escalonamento Dinâmico- para lidar com eventos dinâmicos que podem ocorrer num ambiente de produção, a fim de manter o plano de escalonamento, o mais robusto possível. Esta abordagem é inspirada em computação evolutiva e hiper-heurísticas. Do estudo computacional realizado foi possível concluir que o uso da hiper-heurística de seleção construtiva pode ser vantajoso na resolução de problemas de otimização de adaptação dinâmica.
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
A presente dissertação centra-se no estudo de fadiga de uma ponte ferroviária com tabuleiro misto vigado pertencente a uma via de transporte de mercadorias. O caso de estudo incide sobre a ponte ferroviária sobre o rio do Sonho, localizada na Estrada de Ferro de Carajás situada no nordeste do Brasil. Nesta linha circulam alguns dos maiores comboios de mercadoria do mundo com cerca de 3.7 km de extensão e com cargas por eixo superiores a 300 kN. Numa primeira fase apresentam-se diversas metodologias de análise da fadiga em pontes ferroviárias metálicas. É também descrita a ferramenta computacional FADBridge, desenvolvida em ambiente MATLAB, e que possibilita o cálculo sistematizado e eficiente do dano de fadiga em detalhes construtivos de acordo com as indicações dos eurocódigos. Em seguida são abordadas as metodologias numéricas utilizadas para a realização das análises dinâmicas do sistema ponte-comboio e os aspetos regulamentares a ter em consideração no dimensionamento de pontes ferroviárias. O modelo numérico de elementos finitos da ponte foi realizado com recurso ao programa ANSYS. Com base neste modelo foram obtidos os parâmetros modais, nomeadamente as frequências naturais e os modos de vibração, tendo sido também analisada a importância do efeito compósito via-tabuleiro e a influência do comportamento não linear do balastro. O estudo do comportamento dinâmico da ponte foi realizado por intermédio de uma metodologia de cargas móveis através da ferramenta computacional Train-Bridge Interaction (TBI). As análises dinâmicas foram efetuadas para a passagem dos comboios reais de mercadorias e de passageiros e para os comboios de fadiga regulamentares. Nestas análises foi estudada a influência dos modos de vibração globais e locais, das configurações de carga dos comboios e do aumento da velocidade de circulação, na resposta dinâmica da ponte. Por último, foi avaliado o comportamento à fadiga de diversos detalhes construtivos para os cenários de tráfego regulamentar e reais. Foi ainda analisada a influência do aumento da velocidade, da configuração de cargas dos comboios e da degradação da estrutura nos valores do dano por fadiga e da respetiva vida residual.
Resumo:
Este trabalho aborda uma série de conceitos base no que concerne à ação do vento sobre edifícios altos, começando por ser estabelecidas algumas considerações fundamentais acerca da circulação do vento na camada limite atmosférica bem como acerca da sua interação com as estruturas. É feita uma análise da metodologia proposta pelo Eurocódigo 1 para quantificação de tal ação sobre os edifícios, bem como é elaborada uma comparação da metodologia proposta por este com a metodologia ainda vigente na regulamentação portuguesa. Foram modelados computacionalmente, com recurso a um programa de cálculo estrutural automático, três edifícios altos com diferente secção geométrica em planta que servirão de caso de estudo. Para estes mesmos edifícios são aplicados os dois regulamentos considerados com vista à determinação de esforços e deslocamentos. Sendo os edifícios altos um género de estruturas capazes de ser excitadas dinamicamente perante a ação do vento, adota-se uma metodologia para quantificação desta ação de forma dinâmica na direção do escoamento. Assim, é obtida a resposta dinâmica ao longo do tempo em termos de deslocamentos e acelerações para o caso de estudo considerado e é feita uma comparação da resposta do edifício quadrangular sob a ação dinâmica do vento com a resposta estática regulamentar.
Resumo:
Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. In this paper, we describe a Self-Optimizing Mechanism for Scheduling System through Nature Inspired Optimization Techniques (NIT).
Resumo:
The concept of demand response has a growing importance in the context of the future power systems. Demand response can be seen as a resource like distributed generation, storage, electric vehicles, etc. All these resources require the existence of an infrastructure able to give players the means to operate and use them in an efficient way. This infrastructure implements in practice the smart grid concept, and should accommodate a large number of diverse types of players in the context of a competitive business environment. In this paper, demand response is optimally scheduled jointly with other resources such as distributed generation units and the energy provided by the electricity market, minimizing the operation costs from the point of view of a virtual power player, who manages these resources and supplies the aggregated consumers. The optimal schedule is obtained using two approaches based on particle swarm optimization (with and without mutation) which are compared with a deterministic approach that is used as a reference methodology. A case study with two scenarios implemented in DemSi, a demand Response simulator developed by the authors, evidences the advantages of the use of the proposed particle swarm approaches.
Resumo:
Swarm Intelligence (SI) is a growing research field of Artificial Intelligence (AI). SI is the general term for several computational techniques which use ideas and get inspiration from the social behaviours of insects and of other animals. This paper presents hybridization and combination of different AI approaches, like Bio-Inspired Techniques (BIT), Multi-Agent systems (MAS) and Machine Learning Techniques (ML T). The resulting system is applied to the problem of jobs scheduling to machines on dynamic manufacturing environments.
Resumo:
Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. At this scenario, self-optimizing arise as the ability of the agent to monitor its state and performance and proactively tune itself to respond to environmental stimuli.
Resumo:
Competitive electricity markets have arisen as a result of power-sector restructuration and power-system deregulation. The players participating in competitive electricity markets must define strategies and make decisions using all the available information and business opportunities.
Resumo:
The elastic behavior of the demand consumption jointly used with other available resources such as distributed generation (DG) can play a crucial role for the success of smart grids. The intensive use of Distributed Energy Resources (DER) and the technical and contractual constraints result in large-scale non linear optimization problems that require computational intelligence methods to be solved. This paper proposes a Particle Swarm Optimization (PSO) based methodology to support the minimization of the operation costs of a virtual power player that manages the resources in a distribution network and the network itself. Resources include the DER available in the considered time period and the energy that can be bought from external energy suppliers. Network constraints are considered. The proposed approach uses Gaussian mutation of the strategic parameters and contextual self-parameterization of the maximum and minimum particle velocities. The case study considers a real 937 bus distribution network, with 20310 consumers and 548 distributed generators. The obtained solutions are compared with a deterministic approach and with PSO without mutation and Evolutionary PSO, both using self-parameterization.
Resumo:
In future power systems, in the smart grid and microgrids operation paradigms, consumers can be seen as an energy resource with decentralized and autonomous decisions in the energy management. It is expected that each consumer will manage not only the loads, but also small generation units, heating systems, storage systems, and electric vehicles. Each consumer can participate in different demand response events promoted by system operators or aggregation entities. This paper proposes an innovative method to manage the appliances on a house during a demand response event. The main contribution of this work is to include time constraints in resources management, and the context evaluation in order to ensure the required comfort levels. The dynamic resources management methodology allows a better resources’ management in a demand response event, mainly the ones of long duration, by changing the priorities of loads during the event. A case study with two scenarios is presented considering a demand response with 30 min duration, and another with 240 min (4 h). In both simulations, the demand response event proposes the power consumption reduction during the event. A total of 18 loads are used, including real and virtual ones, controlled by the presented house management system.
Resumo:
The Smart Grid environment allows the integration of resources of small and medium players through the use of Demand Response programs. Despite the clear advantages for the grid, the integration of consumers must be carefully done. This paper proposes a system which simulates small and medium players. The system is essential to produce tests and studies about the active participation of small and medium players in the Smart Grid environment. When comparing to similar systems, the advantages comprise the capability to deal with three types of loads – virtual, contextual and real. It can have several loads optimization modules and it can run in real time. The use of modules and the dynamic configuration of the player results in a system which can represent different players in an easy and independent way. This paper describes the system and all its capabilities.
Resumo:
The concept of demand response has drawing attention to the active participation in the economic operation of power systems, namely in the context of recent electricity markets and smart grid models and implementations. In these competitive contexts, aggregators are necessary in order to make possible the participation of small size consumers and generation units. The methodology proposed in the present paper aims to address the demand shifting between periods, considering multi-period demand response events. The focus is given to the impact in the subsequent periods. A Virtual Power Player operates the network, aggregating the available resources, and minimizing the operation costs. The illustrative case study included is based on a scenario of 218 consumers including generation sources.
Resumo:
The use of distributed energy resources, based on natural intermittent power sources, like wind generation, in power systems imposes the development of new adequate operation management and control methodologies. A short-term Energy Resource Management (ERM) methodology performed in two phases is proposed in this paper. The first one addresses the day-ahead ERM scheduling and the second one deals with the five-minute ahead ERM scheduling. The ERM scheduling is a complex optimization problem due to the high quantity of variables and constraints. In this paper the main goal is to minimize the operation costs from the point of view of a virtual power player that manages the network and the existing resources. The optimization problem is solved by a deterministic mixedinteger non-linear programming approach. A case study considering a distribution network with 33 bus, 66 distributed generation, 32 loads with demand response contracts and 7 storage units and 1000 electric vehicles has been implemented in a simulator developed in the field of the presented work, in order to validate the proposed short-term ERM methodology considering the dynamic power system behavior.
Resumo:
The introduction of new distributed energy resources, based on natural intermittent power sources, in power systems imposes the development of new adequate operation management and control methods. This paper proposes a short-term Energy Resource Management (ERM) methodology performed in two phases. The first one addresses the hour-ahead ERM scheduling and the second one deals with the five-minute ahead ERM scheduling. Both phases consider the day-ahead resource scheduling solution. The ERM scheduling is formulated as an optimization problem that aims to minimize the operation costs from the point of view of a virtual power player that manages the network and the existing resources. The optimization problem is solved by a deterministic mixed-integer non-linear programming approach and by a heuristic approach based on genetic algorithms. A case study considering a distribution network with 33 bus, 66 distributed generation, 32 loads with demand response contracts and 7 storage units has been implemented in a PSCADbased simulator developed in the field of the presented work, in order to validate the proposed short-term ERM methodology considering the dynamic power system behavior.