99 resultados para distributed cognition theory
em Instituto Politécnico do Porto, Portugal
Resumo:
Smart Grids (SGs) have emerged as the new paradigm for power system operation and management, being designed to include large amounts of distributed energy resources. This new paradigm requires new Energy Resource Management (ERM) methodologies considering different operation strategies and the existence of new management players such as several types of aggregators. This paper proposes a methodology to facilitate the coalition between distributed generation units originating Virtual Power Players (VPP) considering a game theory approach. The proposed approach consists in the analysis of the classifications that were attributed by each VPP to the distributed generation units, as well as in the analysis of the previous established contracts by each player. The proposed classification model is based in fourteen parameters including technical, economical and behavioural ones. Depending of the VPP strategies, size and goals, each parameter has different importance. VPP can also manage other type of energy resources, like storage units, electric vehicles, demand response programs or even parts of the MV and LV distribution network. A case study with twelve VPPs with different characteristics and one hundred and fifty real distributed generation units is included in the paper.
Resumo:
Psychosocial interventions have proven to be effective in treating social cognition in people with psychotic disorders. The current study aimed to determine the effects of a metacognitive and social cognition training (MSCT) program, designed to both remediate deficits and correct biases in social cognition. Thirty-five clinically stable outpatients were recruited and assigned to the MSCT program (n = 19) for 10 weeks (18 sessions) or to the TAU group (n = 16), and they all completed pre- and post-treatment assessments of social cognition, cognitive biases, functioning and symptoms. The MSCT group demonstrated a significant improvement in theory of mind, social perception, emotion recognition and social functioning. Additionally, the tendency to jump to conclusions was significantly reduced among the MSCT group after training. There were no differential benefits regarding clinical symptoms except for one trend group effect for general psychopathology. The results support the efficacy of the MSCT format, but further development of the training program is required to increase the benefits related to attributional style.
Resumo:
Dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for teams of mobile robots, that must transport a large object and simultaneously avoid collisions with (either static or dynamic) obstacles. Here we demonstrate in simulations and implementations in real robots that it is possible to simplify the architectures presented in previous work and to extend the approach to teams of n robots. The robots have no prior knowledge of the environment. The motion of each robot is controlled by a time series of asymptotical stable states. The attractor dynamics permits the integration of information from various sources in a graded manner. As a result, the robots show a strikingly smooth an stable team behaviour.
Resumo:
4th International Conference on Future Generation Communication Technologies (FGCT 2015), Luton, United Kingdom.
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades, due to the progress in the area of chaos that revealed subtle relationships with the FC concepts. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. Having these ideas in mind, the paper discusses a FC perspective in the study of the dynamics and control of some distributed parameter systems.
Resumo:
A capacidade de compreensão das acções dos outros e de imitação tem sido descrita como fundamental para a cognição social do ser humano. Recentemente tem sido atribuída a responsabilidade desta capacidade a um sistema neuronal denominado de Sistema de Neurónios Espelho, que se tem demonstrado estar afectado em perturbações mentais que se caracterizam por alterações severas da teoria da mente e da empatia, como é o caso do autismo. No caso do Síndrome de Down, verifica-se a coexistência de boas competências sociais e de capacidades práxicas e de imitação intactas, com dificuldades de interpretação de situações sociais e de reconhecimento de emoções, que nos levam a questionar acerca da actividade do seu Sistema de Neurónios Espelho. As oscilações do ritmo de frequências um (8-13 Hz) no córtex sensório-motor perante a observação de acções são consideradas um reflexo da actividade dos neurónios espelho, estando estabelecido que em pessoas saudáveis ocorre uma supressão mu na realização de movimentos com o membro superior e na sua observação quando realizados por outras pessoas. Neste estudo registou-se electroencefalograficamente a supressão dos ritmos mu em 11 pessoas com SD e em 20 pessoas sem SD nas seguintes condições: observação de um vídeo com duas bolas em movimento, observação de um vídeo com um movimento repetido de uma mão e realização movimentos com a mão. A baseline foi registada através da observação de um ponto estático. Constatamos que existe supressão dos ritmos mu na observação das acções dos outros em pessoas com Síndrome Down da mesma forma que ocorre na realização do próprio movimento, sugerindo uma relativa preservação do funcionamento dos neurónios espelho e dos mecanismos básicos de cognição social. Estes resultados vão de encontro aos estudos que apontam para a integridade das capacidades de imitação no Síndrome Down. Verificamos também que não se encontram diferenças significativas na supressão dos ritmos mu entre os grupos de pessoas com Síndrome Down e de Controlo em relação às condições usadas na investigação.
Resumo:
This chapter addresses the resolution of dynamic scheduling by means of meta-heuristic and multi-agent systems. Scheduling is an important aspect of automation in manufacturing systems. Several contributions have been proposed, but the problem is far from being solved satisfactorily, especially if scheduling concerns real world applications. The proposed multi-agent scheduling system assumes the existence of several resource agents (which are decision-making entities based on meta-heuristics) distributed inside the manufacturing system that interact with other agents in order to obtain optimal or near-optimal global performances.
Resumo:
In competitive electricity markets with deep concerns at the efficiency level, demand response programs gain considerable significance. In the same way, distributed generation has gained increasing importance in the operation and planning of power systems. Grid operators and utilities are taking new initiatives, recognizing the value of demand response and of distributed generation for grid reliability and for the enhancement of organized spot market´s efficiency. Grid operators and utilities become able to act in both energy and reserve components of electricity markets. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The proposed method has been computationally implemented and its application is illustrated in this paper using a 32 bus distribution network with 32 medium voltage consumers.
Resumo:
Distributed Energy Resources (DER) scheduling in smart grids presents a new challenge to system operators. The increase of new resources, such as storage systems and demand response programs, results in additional computational efforts for optimization problems. On the other hand, since natural resources, such as wind and sun, can only be precisely forecasted with small anticipation, short-term scheduling is especially relevant requiring a very good performance on large dimension problems. Traditional techniques such as Mixed-Integer Non-Linear Programming (MINLP) do not cope well with large scale problems. This type of problems can be appropriately addressed by metaheuristics approaches. This paper proposes a new methodology called Signaled Particle Swarm Optimization (SiPSO) to address the energy resources management problem in the scope of smart grids, with intensive use of DER. The proposed methodology’s performance is illustrated by a case study with 99 distributed generators, 208 loads, and 27 storage units. The results are compared with those obtained in other methodologies, namely MINLP, Genetic Algorithm, original Particle Swarm Optimization (PSO), Evolutionary PSO, and New PSO. SiPSO performance is superior to the other tested PSO variants, demonstrating its adequacy to solve large dimension problems which require a decision in a short period of time.
Resumo:
The large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the generation mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final implemented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solutions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD , is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD .
Resumo:
This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper detail some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study.
Resumo:
Sustainable development concerns are being addressed with increasing attention, in general, and in the scope of power industry, in particular. The use of distributed generation (DG), mainly based on renewable sources, has been seen as an interesting approach to this problem. However, the increasing of DG in power systems raises some complex technical and economic issues. This paper presents ViProd, a simulation tool that allows modeling and simulating DG operation and participation in electricity markets. This paper mainly focuses on the operation of Virtual Power Producers (VPP) which are producers’ aggregations, being these producers mainly of DG type. The paper presents several reserve management strategies implemented in the scope of ViProd and the results of a case study, based on real data.
Resumo:
The future scenarios for operation of smart grids are likely to include a large diversity of players, of different types and sizes. With control and decision making being decentralized over the network, intelligence should also be decentralized so that every player is able to play in the market environment. In the new context, aggregator players, enabling medium, small, and even micro size players to act in a competitive environment, will be very relevant. Virtual Power Players (VPP) and single players must optimize their energy resource management in order to accomplish their goals. This is relatively easy to larger players, with financial means to have access to adequate decision support tools, to support decision making concerning their optimal resource schedule. However, the smaller players have difficulties in accessing this kind of tools. So, it is required that these smaller players can be offered alternative methods to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), intended to support smaller players’ resource scheduling. The used methodology uses a training set that is built using the energy resource scheduling solutions obtained with a reference optimization methodology, a mixed-integer non-linear programming (MINLP) in this case. The trained network is able to achieve good schedule results requiring modest computational means.
Resumo:
A multilevel negotiation mechanism for operating smart grids and negotiating in electricity markets considers the advantages of virtual power player management.
Resumo:
Sustainable development concerns made renewable energy sources to be increasingly used for electricity distributed generation. However, this is mainly due to incentives or mandatory targets determined by energy policies as in European Union. Assuring a sustainable future requires distributed generation to be able to participate in competitive electricity markets. To get more negotiation power in the market and to get advantages of scale economy, distributed generators can be aggregated giving place to a new concept: the Virtual Power Producer (VPP). VPPs are multi-technology and multisite heterogeneous entities that should adopt organization and management methodologies so that they can make distributed generation a really profitable activity, able to participate in the market. This paper presents ViProd, a simulation tool that allows simulating VPPs operation, in the context of MASCEM, a multi-agent based eletricity market simulator.