5 resultados para dissolved organic matter
em Instituto Politécnico do Porto, Portugal
Resumo:
The main objective of this study was to characterize the organic matter present in raw water and along the treatment process, as well as its seasonal variation. A natural organic matter fractionation approach has been applied to Lever water treatment plant located in Douro River, in Oporto (Portugal). The process used was based on the sorption of dissolved organic matter in different types of ion exchange resins, DAX-8, DAX-4 and IRA-958, allowing its separation into four fractions: very hydrophobic acids (VHA), slightly hydrophobic acids (SHA), charged hydrophilic (CHA) and hydrophilic neutral (NEU). The dissolved organic carbon (DOC) determination was used to quantify dissolved organic matter. Samples were collected monthly, during approximately one year, from raw water captured at the surface and under the bed of the river, and after each step of the treatment: pre-filtration in sand/anthracite filters, ozonation, coagulation/flocculation, counter current dissolved air flotation and filtration (CoCoDAFF) and chlorination. The NEU fraction showed a seasonal variation, with maximum values in autumn for the sampling points corresponding to raw water captured at the surface and under the bed of the river. It was usually the predominating fraction and did not show a significant decrease throughout the treatment. Nevertheless their low concentration, the same occurred for the CHA and VHA fractions. There was an overall decrease in the SHA fraction throughout the water treatment (especially after CoCoDAFF and ozonation) as well as in the DOC. The TSUVA254 values obtained for raw water generally varied between 2.0 and 4.0 L mgC-1 m-1 and between 0.75 and 1.78 L mgC-1 m-1 for treated water. It was observed a decrease of TSUVA values along the treatment, especially after ozonation. These results may contribute to a further optimization in the process of treating water for human consumption.
Resumo:
A QuEChERS method has been developed for the determination of 14 organochlorine pesticides in 14 soils from different Portuguese regions with wide range composition. The extracts were analysed by GC-ECD (where GC-ECD is gas chromatography-electron-capture detector) and confirmed by GC-MS/MS (where MS/MS is tandem mass spectrometry). The organic matter content is a key factor in the process efficiency. An optimization was carried out according to soils organic carbon level, divided in two groups: HS (organic carbon>2.3%) and LS (organic carbon<2.3%). Themethod was validated through linearity, recovery, precision and accuracy studies. The quantification was carried out using a matrixmatched calibration to minimize the existence of the matrix effect. Acceptable recoveries were obtained (70–120%) with a relative standard deviation of ≤16% for the three levels of contamination. The ranges of the limits of detection and of the limits of quantification in soils HS were from 3.42 to 23.77 μg kg−1 and from 11.41 to 79.23 μg kg−1, respectively. For LS soils, the limits of detection ranged from 6.11 to 14.78 μg kg−1 and the limits of quantification from 20.37 to 49.27 μg kg−1. In the 14 collected soil samples only one showed a residue of dieldrin (45.36 μg kg−1) above the limit of quantification. This methodology combines the advantages of QuEChERS, GC-ECD detection and GC-MS/MS confirmation producing a very rapid, sensitive and reliable procedure which can be applied in routine analytical laboratories.
Resumo:
This work reports a relatively rapid procedure for the forecasting of the remediation time (RT) of sandy soils contaminated with cyclohexane using vapour extraction. The RT estimated through the mathematical fitting of experimental results was compared with that of real soils. The main objectives were: (i) to predict the RT of soils with natural organic matter (NOM) and water contents different from those used in experiments; and (ii) to analyse the time and efficiency of remediation, and the distribution of contaminants into the soil matrix after the remediation process, according to the soil contents of: (ii1) NOM; and (ii2) water. For sandy soils with negligible clay contents, artificially contaminated with cyclohexane before vapour extraction, it was concluded that: (i) if the NOM and water contents belonged to the range of the prepared soils, the RT of real soils could be predicted with relative differences not higher than 12%; (ii1) the increase of NOM content from 0% to 7.5% increased the RT (1.8–13 h) and decreased the remediation efficiency (RE) (99–90%) and (ii2) the increase of soil water content from 0% to 6% increased the RT (1.8–4.9 h) and decreased the RE (99–97%). NOM increases the monolayer capacity leading to a higher sorption into the solid phase. Increasing of soil water content reduces the mass transfer coefficient between phases. Concluding, NOM and water contents influence negatively the remediation process, turning it less efficient and more time consuming, and consequently more expensive.
Resumo:
Abstract This work reports the analysis of the efficiency and time of soil remediation using vapour extraction as well as provides comparison of results using both, prepared and real soils. The main objectives were: (i) to analyse the efficiency and time of remediation according to the water and natural organic matter content of the soil; and (ii) to assess if a previous study, performed using prepared soils, could help to preview the process viability in real conditions. For sandy soils with negligible clay content, artificially contaminated with cyclohexane before vapour extraction, it was concluded that (i) the increase of soil water content and mainly of natural organic matter content influenced negatively the remediation process, making it less efficient, more time consuming, and consequently more expensive; and (ii) a previous study using prepared soils of similar characteristics has proven helpful for previewing the process viability in real conditions.
Resumo:
O tratamento de água para consumo humano tem por objectivos não só a sua qualidade em termos de parâmetros químicos e físicos, como também microbiológicos. Considerando que a MON pode afectar os sistemas de tratamento, a sua redução minimiza a formação de subprodutos de desinfecção, como por exemplo os trihalometanos e diminui o crescimento de microrganismos ao longo do sistema de distribuição. Nesse sentido tem havido recentemente uma grande evolução na investigação relativamente à remoção de matéria orgânica natural. O principal objectivo deste trabalho foi o de caracterizar a matéria orgânica presente na água bruta e ao longo do processo de tratamento, assim como a sua evolução sazonal. Os dados obtidos a partir desta caracterização poderão contribuir para uma futura optimização no processo de tratamento de águas de consumo. O processo utilizado baseou-se na sorção da matéria orgânica dissolvida em diferentes tipos de resinas de permuta iónica, DAX-8, DAX-4 e IRA-958, permitindo a sua separação em várias fracções: ácidos muito hidrofóbicos (VHA), ácidos ligeiramente hidrofóbicos (SHA), compostos hidrofílicos carregados (CHA) e hidrofílicos neutros (NEU). De acordo com os resultados obtidos apenas a fracção NEU demonstrou ter uma tendência sazonal, apresentando valores máximos no Verão, nos pontos de amostragem referentes à água bruta superficial (PA802) e água bruta superficial após pré-tratamento por filtração (PA800). Os valores de COD não mostraram uma variação sazonal para as amostras de água bruta superficial que rondaram os 2 mg C/L ao longo do período de amostragem (Julho a Outubro), durante o qual se verificou uma baixa pluviosidade e temperaturas médias muito semelhantes. Os compostos NEU predominam em todos os pontos de amostragem não apresentando uma tendência definida ao longo do tratamento. Observou-se uma diminuição das fracções SHA e CHA ao longo do tratamento. Não se pode indicar uma tendência definida relativamente à fracção VHA. Verifica-se globalmente uma diminuição do teor de MON ao longo do tratamento. Este trabalho demonstrou que na água bruta superficial existe uma predominância dos compostos NEU, seguidos dos SHA, dos VHA e finalmente dos compostos CHA. Na água bruta captada no sub-leito do rio, verifica-se apenas a existência dos compostos NEU, sendo as restantes fracções praticamente nulas. Os valores mais elevados de TSUVA254nm foram obtidos para as amostras que não sofreram qualquer tratamento, água bruta do sub-leito (PA903) e superficial (PA802), e água bruta após pré-filtração (PA800). Nos restantes pontos de amostragem, apesar de se verificarem valores inferiores, não se observa uma diminuição deste parâmetro ao longo do tratamento, nem uma variação sazonal. Os valores de TSUVA254nm obtidos são geralmente inferiores a 3 L.mgC-1.m-1, correspondendo a materiais não húmicos, que são considerados biodegradáveis. Para as amostras de água tratada os valores oscilam entre os 1,23 e 1,58 L.mgC-1.m-1, valores inferiores a 2 L.mgC-1.m-1, o que é considerado um valor de referência ao nível do tratamento, segundo a USEPA.