27 resultados para diagnostic agent
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper describes the development and the implementation of a multi-agent system for integrated diagnosis of power transformers. The system is divided in layers which contain a number of agents performing different functions. The social ability and cooperation between the agents lead to the final diagnosis and to other relevant conclusions through integrating various monitoring technologies, diagnostic methods and data sources, such as the dissolved gas analysis.
Resumo:
This paper presents MASCEM - Multi-Agent Simulator for Electricity Markets improvement towards an enlarged model for Seller Agents coalitions. The simulator has been improved, both regarding its user interface and internal structure. The OOA, used as development platform, version was updated and the multi-agent model was adjusted for implementing and testing several negotiations regarding Seller agents’ coalitions. Seller coalitions are a very important subject regarding the increased relevance of Distributed Generation under liberalised electricity markets.
Resumo:
The increasing number of players that operate in power systems leads to a more complex management. In this paper a new multi-agent platform is proposed, which simulates the real operation of power system players. MASGriP – A Multi-Agent Smart Grid Simulation Platform is presented. Several consumer and producer agents are implemented and simulated, considering real characteristics and different goals and actuation strategies. Aggregator entities, such as Virtual Power Players and Curtailment Service Providers are also included. The integration of MASGriP agents in MASCEM (Multi-Agent System for Competitive Electricity Markets) simulator allows the simulation of technical and economical activities of several players. An energy resources management architecture used in microgrids is also explained.
Resumo:
The spread and globalization of distributed generation (DG) in recent years has should highly influence the changes that occur in Electricity Markets (EMs). DG has brought a large number of new players to take action in the EMs, therefore increasing the complexity of these markets. Simulation based on multi-agent systems appears as a good way of analyzing players’ behavior and interactions, especially in a coalition perspective, and the effects these players have on the markets. MASCEM – Multi-Agent System for Competitive Electricity Markets was created to permit the study of the market operation with several different players and market mechanisms. MASGriP – Multi-Agent Smart Grid Platform is being developed to facilitate the simulation of micro grid (MG) and smart grid (SG) concepts with multiple different scenarios. This paper presents an intelligent management method for MG and SG. The simulation of different methods of control provides an advantage in comparing different possible approaches to respond to market events. Players utilize electric vehicles’ batteries and participate in Demand Response (DR) contracts, taking advantage on the best opportunities brought by the use of all resources, to improve their actions in response to MG and/or SG requests.
Resumo:
Renewable based power generation has significantly increased over the last years. However, this process has evolved separately from electricity markets, leading to an inadequacy of the present market models to cope with huge quantities of renewable energy resources, and to take full advantage of the presently existing and the increasing envisaged renewable based and distributed energy resources. This paper proposes the modelling of electricity markets at several levels (continental, regional and micro), taking into account the specific characteristics of the players and resources involved in each level and ensuring that the proposed models accommodate adequate business models able to support the contribution of all the resources in the system, from the largest to the smaller ones. The proposed market models are integrated in MASCEM (Multi- Agent Simulator of Competitive Electricity Markets), using the multi agent approach advantages for overcoming the current inadequacy and significant limitations of the presently existing electricity market simulators to deal with the complex electricity market models that must be adopted.
Resumo:
This paper presents a Multi-Agent Market simulator designed for analyzing agent market strategies based on a complete understanding of buyer and seller behaviors, preference models and pricing algorithms, considering user risk preferences and game theory for scenario analysis. The system includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions, and capable of considering other agents reactions.
Resumo:
Distributed energy resources will provide a significant amount of the electricity generation and will be a normal profitable business. In the new decentralized grid, customers will be among the many decentralized players and may even help to co-produce the required energy services such as demand-side management and load shedding. So, they will gain the opportunity to be more active market players. The aggregation of DG plants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. In this paper we propose the improvement of MASCEM, a multi-agent simulation tool to study negotiations in electricity spot markets based on different market mechanisms and behavior strategies, in order to take account of decentralized players such as VPP.
Resumo:
This paper presents a new methodology for the creation and management of coalitions in Electricity Markets. This approach is tested using the multi-agent market simulator MASCEM, taking advantage of its ability to provide the means to model and simulate VPP (Virtual Power Producers). VPPs are represented as coalitions of agents, with the capability of negotiating both in the market, and internally, with their members, in order to combine and manage their individual specific characteristics and goals, with the strategy and objectives of the VPP itself. The new features include the development of particular individual facilitators to manage the communications amongst the members of each coalition independently from the rest of the simulation, and also the mechanisms for the classification of the agents that are candidates to join the coalition. In addition, a global study on the results of the Iberian Electricity Market is performed, to compare and analyze different approaches for defining consistent and adequate strategies to integrate into the agents of MASCEM. This, combined with the application of learning and prediction techniques provide the agents with the ability to learn and adapt themselves, by adjusting their actions to the continued evolving states of the world they are playing in.
Resumo:
This paper presents a new architecture for the MASCEM, a multi-agent electricity market simulator. This is implemented in a Prolog which is integrated in the JAVA program by using the LPA Win-Prolog Intelligence Server (IS) provides a DLL interface between Win-Prolog and other applications. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets.
Resumo:
The scheduling problem is considered in complexity theory as a NP-hard combinatorial optimization problem. Meta-heuristics proved to be very useful in the resolution of this class of problems. However, these techniques require parameter tuning which is a very hard task to perform. A Case-based Reasoning module is proposed in order to solve the parameter tuning problem in a Multi-Agent Scheduling System. A computational study is performed in order to evaluate the proposed CBR module performance.
Resumo:
This paper describes a Multi-agent Scheduling System that assumes the existence of several Machines Agents (which are decision-making entities) distributed inside the Manufacturing System that interact and cooperate with other agents in order to obtain optimal or near-optimal global performances. Agents have to manage their internal behaviors and their relationships with other agents via cooperative negotiation in accordance with business policies defined by the user manager. Some Multi Agent Systems (MAS) organizational aspects are considered. An original Cooperation Mechanism for a Team-work based Architecture is proposed to address dynamic scheduling using Meta-Heuristics.
Resumo:
Group decision making plays an important role in organizations, especially in the present-day economy that demands high-quality, yet quick decisions. Group decision-support systems (GDSSs) are interactive computer-based environments that support concerted, coordinated team efforts toward the completion of joint tasks. The need for collaborative work in organizations has led to the development of a set of general collaborative computer-supported technologies and specific GDSSs that support distributed groups (in time and space) in various domains. However, each person is unique and has different reactions to various arguments. Many times a disagreement arises because of the way we began arguing, not because of the content itself. Nevertheless, emotion, mood, and personality factors have not yet been addressed in GDSSs, despite how strongly they influence results. Our group’s previous work considered the roles that emotion and mood play in decision making. In this article, we reformulate these factors and include personality as well. Thus, this work incorporates personality, emotion, and mood in the negotiation process of an argumentbased group decision-making process. Our main goal in this work is to improve the negotiation process through argumentation using the affective characteristics of the involved participants. Each participant agent represents a group decision member. This representation lets us simulate people with different personalities. The discussion process between group members (agents) is made through the exchange of persuasive arguments. Although our multiagent architecture model4 includes two types of agents—the facilitator and the participant— this article focuses on the emotional, personality, and argumentation components of the participant agent.
Resumo:
The current ubiquitous network access and increase in network bandwidth are driving the sales of mobile location-aware user devices and, consequently, the development of context-aware applications, namely location-based services. The goal of this project is to provide consumers of location-based services with a richer end-user experience by means of service composition, personalization, device adaptation and continuity of service. Our approach relies on a multi-agent system composed of proxy agents that act as mediators and providers of personalization meta-services, device adaptation and continuity of service for consumers of pre-existing location-based services. These proxy agents, which have Web services interfaces to ensure a high level of interoperability, perform service composition and take in consideration the preferences of the users, the limitations of the user devices, making the usage of different types of devices seamless for the end-user. To validate and evaluate the performance of this approach, use cases were defined, tests were conducted and results gathered which demonstrated that the initial goals were successfully fulfilled.
Resumo:
The environmental management domain is vast and encompasses many identifiable activities: impact assessment, planning, project evaluation, etc. In particular, this paper focusses on the modelling of the project evaluation activity. The environmental decision support system under development aims to provide assistance to project developers in the selection of adequate locations, guaranteeing the compliance with the applicable regulations and the existing development plans as well as satisfying the specified project requirements. The inherent multidisciplinarity features of this activity lead to the adoption of the Multi-Agent paradigm, and, in particular, to the modelling of the involved agencies as a community of cooperative autonomous agents, where each agency contributes with its share of problem solving to the final system’s recommendation. To achieve this behaviour the many conclusions of the individual agencies have to be justifiably accommodated: not only they may differ, but can be interdependent, complementary, irreconcilable, or simply, independent. We propose different solutions (involving both local and global consistency) to support the adequate merge of the distinct perspectives that inevitably arise during this type of decision making.
Resumo:
In a real world multiagent system, where the agents are faced with partial, incomplete and intrinsically dynamic knowledge, conflicts are inevitable. Frequently, different agents have goals or beliefs that cannot hold simultaneously. Conflict resolution methodologies have to be adopted to overcome such undesirable occurrences. In this paper we investigate the application of distributed belief revision techniques as the support for conflict resolution in the analysis of the validity of the candidate beams to be produced in the CERN particle accelerators. This CERN multiagent system contains a higher hierarchy agent, the Specialist agent, which makes use of meta-knowledge (on how the con- flicting beliefs have been produced by the other agents) in order to detect which beliefs should be abandoned. Upon solving a conflict, the Specialist instructs the involved agents to revise their beliefs accordingly. Conflicts in the problem domain are mapped into conflicting beliefs of the distributed belief revision system, where they can be handled by proven formal methods. This technique builds on well established concepts and combines them in a new way to solve important problems. We find this approach generally applicable in several domains.