7 resultados para decomposition of a support
em Instituto Politécnico do Porto, Portugal
Resumo:
The decomposition of a fractional linear system is discussed in this paper. It is shown that it can be decomposed into an integer order part, corresponding to possible existing poles, and a fractional part. The first and second parts are responsible for the short and long memory behaviors of the system, respectively, known as characteristic of fractional systems.
Resumo:
Copper zinc tin sulfide (CZTS) is a promising Earthabundant thin-film solar cell material; it has an appropriate band gap of ~1.45 eV and a high absorption coefficient. The most efficient CZTS cells tend to be slightly Zn-rich and Cu-poor. However, growing Zn-rich CZTS films can sometimes result in phase decomposition of CZTS into ZnS and Cu2SnS3, which is generally deleterious to solar cell performance. Cubic ZnS is difficult to detect by XRD, due to a similar diffraction pattern. We hypothesize that synchrotron-based extended X-ray absorption fine structure (EXAFS), which is sensitive to local chemical environment, may be able to determine the quantity of ZnS phase in CZTS films by detecting differences in the second-nearest neighbor shell of the Zn atoms. Films of varying stoichiometries, from Zn-rich to Cu-rich (Zn-poor) were examined using the EXAFS technique. Differences in the spectra as a function of Cu/Zn ratio are detected. Linear combination analysis suggests increasing ZnS signal as the CZTS films become more Zn-rich. We demonstrate that the sensitive technique of EXAFS could be used to quantify the amount of ZnS present and provide a guide to crystal growth of highly phase pure films.
Resumo:
More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which simulates the electricity markets environment. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated by being included in ALBidS and then compared with the application of an Artificial Neural Network, originating promising results. The proposed approach is tested and validated using real electricity markets data from MIBEL - Iberian market operator.
Resumo:
The study seeks to identify the determinant factors of the repatriate’s decision to remain or leave the company after repatriation, in a convenience sample of 40 Portuguese returnees working in companies based in Portugal. The main results were as follows: (1) there are seven factor categories: (a) salaries and benefits; (b) possibility of promotion, development, professional development; (c) organizational support (during and after the international mission) recognition of work; (d) economic and social atmosphere of the company, (e) good relationship with leadership; (f) convenience and/or personal / family well-being and; (g) external alternatives; (2) the main factors leading to permanence are (a) possibility of promotion, development and professional development and; (b) the existence of personal and family well-being / convenience; (3) the main factors leading to abandonment are (a) lack of organizational support and recognition of work performed; (b) lack of possibility of promotion, development and professional development and; (c) lack of personal / family well-being / convenience. Globally, the study suggests that the factors leading to permanence are very similar to those that lead to abandonment, although in reverse.
Resumo:
The energy sector has suffered a significant restructuring that has increased the complexity in electricity market players' interactions. The complexity that these changes brought requires the creation of decision support tools to facilitate the study and understanding of these markets. The Multiagent Simulator of Competitive Electricity Markets (MASCEM) arose in this context, providing a simulation framework for deregulated electricity markets. The Adaptive Learning strategic Bidding System (ALBidS) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM, ALBidS considers several different strategic methodologies based on highly distinct approaches. Six Thinking Hats (STH) is a powerful technique used to look at decisions from different perspectives, forcing the thinker to move outside its usual way of thinking. This paper aims to complement the ALBidS strategies by combining them and taking advantage of their different perspectives through the use of the STH group decision technique. The combination of ALBidS' strategies is performed through the application of a genetic algorithm, resulting in an evolutionary learning approach.
Resumo:
Crowdsourcing is evolving into powerful outsourcing options for organizations by providing access to the intellectual capital within a vast knowledge community. Innovation brokering services have emerged to facilitate crowdsourcing projects by connecting up companies with potential solution providers within the wider ‘crowd’. Most existing innovation brokering services are primarily aimed at larger organizations, however, Small and Medium Enterprises (SMEs) offer considerable potential for crowdsourcing activity since they are typically the innovation and employment engines in society; they are typically more nimble and responsive to the business environment than the larger companies. SMEs have very different challenges and needs to larger organizations since they have fewer resources, a more limited knowledge and skill base, and immature management practices. Consequently, innovation brokering for SMEs require considerably more support than for larger organizations. This paper identifies the crowdsourcing innovation brokerage facilities needed by SMEs, and presents an architecture that encourages knowledge sharing, development of community, support in mixing and matching capabilities, and management of stakeholders’ risks. Innovation brokering is emerging as a novel business model that is challenging concepts of the traditional value chain and organizational boundaries.