4 resultados para consumer finance
em Instituto Politécnico do Porto, Portugal
Resumo:
Dissertação para a obtenção do Grau de Mestre em Contabilidade e Finanças Orientador: Mestre Adalmiro Álvaro Malheiro de Castro Andrade Pereira
Resumo:
O Project Finance é uma forma de financiamento de projetos inovadora, muito utilizada nos Estados Unidos e na Europa e que se aplica essencialmente a projetos de grande escala devido às características subjacentes. Este tema é relevante devido às condições financeiras, sociais e políticas que estamos a viver. As empresas enfrentam muitas adversidades para manter o seu negócio em bom funcionamento, procurando obter vantagens competitivas, mas isso torna-se difícil quando estas não possuem meios financeiros e de gestão para sustentar os investimentos. E é aqui que o Project Finance tem um papel importante, pois é um tipo de financiamento que pode facilitar a execução de projetos em qualquer lugar do mundo, mais particularmente nos países em desenvolvimento em que as empresas enfrentam dificuldades em obter recursos financeiros.
Resumo:
Recent and future changes in power systems, mainly in the smart grid operation context, are related to a high complexity of power networks operation. This leads to more complex communications and to higher network elements monitoring and control levels, both from network’s and consumers’ standpoint. The present work focuses on a real scenario of the LASIE laboratory, located at the Polytechnic of Porto. Laboratory systems are managed by the SCADA House Intelligent Management (SHIM), already developed by the authors based on a SCADA system. The SHIM capacities have been recently improved by including real-time simulation from Opal RT. This makes possible the integration of Matlab®/Simulink® real-time simulation models. The main goal of the present paper is to compare the advantages of the resulting improved system, while managing the energy consumption of a domestic consumer.
Resumo:
Forecasting future sales is one of the most important issues that is beyond all strategic and planning decisions in effective operations of retail businesses. For profitable retail businesses, accurate demand forecasting is crucial in organizing and planning production, purchasing, transportation and labor force. Retail sales series belong to a special type of time series that typically contain trend and seasonal patterns, presenting challenges in developing effective forecasting models. This work compares the forecasting performance of state space models and ARIMA models. The forecasting performance is demonstrated through a case study of retail sales of five different categories of women footwear: Boots, Booties, Flats, Sandals and Shoes. On both methodologies the model with the minimum value of Akaike's Information Criteria for the in-sample period was selected from all admissible models for further evaluation in the out-of-sample. Both one-step and multiple-step forecasts were produced. The results show that when an automatic algorithm the overall out-of-sample forecasting performance of state space and ARIMA models evaluated via RMSE, MAE and MAPE is quite similar on both one-step and multi-step forecasts. We also conclude that state space and ARIMA produce coverage probabilities that are close to the nominal rates for both one-step and multi-step forecasts.