9 resultados para composite structures
em Instituto Politécnico do Porto, Portugal
Resumo:
The problem of uncertainty propagation in composite laminate structures is studied. An approach based on the optimal design of composite structures to achieve a target reliability level is proposed. Using the Uniform Design Method (UDM), a set of design points is generated over a design domain centred at mean values of random variables, aimed at studying the space variability. The most critical Tsai number, the structural reliability index and the sensitivities are obtained for each UDM design point, using the maximum load obtained from optimal design search. Using the UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on supervised evolutionary learning. Finally, using the developed ANN a Monte Carlo simulation procedure is implemented and the variability of the structural response based on global sensitivity analysis (GSA) is studied. The GSA is based on the first order Sobol indices and relative sensitivities. An appropriate GSA algorithm aiming to obtain Sobol indices is proposed. The most important sources of uncertainty are identified.
Resumo:
This article describes a finite element-based formulation for the statistical analysis of the response of stochastic structural composite systems whose material properties are described by random fields. A first-order technique is used to obtain the second-order statistics for the structural response considering means and variances of the displacement and stress fields of plate or shell composite structures. Propagation of uncertainties depends on sensitivities taken as measurement of variation effects. The adjoint variable method is used to obtain the sensitivity matrix. This method is appropriated for composite structures due to the large number of random input parameters. Dominant effects on the stochastic characteristics are studied analyzing the influence of different random parameters. In particular, a study of the anisotropy influence on uncertainties propagation of angle-ply composites is carried out based on the proposed approach.
Resumo:
The influence of uncertainties of input parameters on output response of composite structures is investigated in this paper. In particular, the effects of deviations in mechanical properties, ply angles, ply thickness and on applied loads are studied. The uncertainty propagation and the importance measure of input parameters are analysed using three different approaches: a first-order local method, a Global Sensitivity Analysis (GSA) supported by a variance-based method and an extension of local variance to estimate the global variance over the domain of inputs. Sample results are shown for a shell composite laminated structure built with different composite systems including multi-materials. The importance measures of input parameters on structural response based on numerical results are established and discussed as a function of the anisotropy of composite materials. Needs for global variance methods are discussed by comparing the results obtained from different proposed methodologies. The objective of this paper is to contribute for the use of GSA techniques together with low expensive local importance measures.
Resumo:
An approach for the analysis of uncertainty propagation in reliability-based design optimization of composite laminate structures is presented. Using the Uniform Design Method (UDM), a set of design points is generated over a domain centered on the mean reference values of the random variables. A methodology based on inverse optimal design of composite structures to achieve a specified reliability level is proposed, and the corresponding maximum load is outlined as a function of ply angle. Using the generated UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on an evolutionary learning process. Then, a Monte Carlo simulation using ANN development is performed to simulate the behavior of the critical Tsai number, structural reliability index, and their relative sensitivities as a function of the ply angle of laminates. The results are generated for uniformly distributed random variables on a domain centered on mean values. The statistical analysis of the results enables the study of the variability of the reliability index and its sensitivity relative to the ply angle. Numerical examples showing the utility of the approach for robust design of angle-ply laminates are presented.
Resumo:
In this work, a comparative study on different drill point geometries and feed rate for composite laminates drilling is presented. For this goal, thrust force monitoring during drilling, hole wall roughness measurement and delamination extension assessment after drilling is accomplished. Delamination is evaluated using enhanced radiography combined with a dedicated computational platform that integrates algorithms of image processing and analysis. An experimental procedure was planned and consequences were evaluated. Results show that a cautious combination of the factors involved, like drill tip geometry or feed rate, can promote the reduction of delamination damage.
Resumo:
The widespread employment of carbon-epoxy laminates in high responsibility and severely loaded applications introduces an issue regarding their handling after damage. Repair of these structures should be evaluated, instead of their disposal, for cost saving and ecological purposes. Under this perspective, the availability of efficient repair methods is essential to restore the strength of the structure. The development and validation of accurate predictive tools for the repairs behaviour are also extremely important, allowing the reduction of costs and time associated to extensive test programmes. Comparing with strap repairs, scarf repairs have the advantages of a higher efficiency and the absence of aerodynamic disturbance. This work reports on a numerical study of the tensile behaviour of three-dimensional scarf repairs in carbon-epoxy structures, using a ductile adhesive (Araldite® 2015). The finite elements analysis was performed in ABAQUS® and Cohesive Zone Modelling was used for the simulation of damage onset and growth in the adhesive layer. Trapezoidal cohesive laws in each pure mode were used to account for the ductility of the specific adhesive mentioned. A parametric study was performed on the repair width and scarf angle. The use of over-laminating plies covering the repaired region at the outer or both repair surfaces was also tested as an attempt to increase the repairs efficiency. The obtained results allowed the proposal of design principles for repairing composite structures.
Resumo:
Variations of manufacturing process parameters and environmental aspects may affect the quality and performance of composite materials, which consequently affects their structural behaviour. Reliability-based design optimisation (RBDO) and robust design optimisation (RDO) searches for safe structural systems with minimal variability of response when subjected to uncertainties in material design parameters. An approach that simultaneously considers reliability and robustness is proposed in this paper. Depending on a given reliability index imposed on composite structures, a trade-off is established between the performance targets and robustness. Robustness is expressed in terms of the coefficient of variation of the constrained structural response weighted by its nominal value. The Pareto normed front is built and the nearest point to the origin is estimated as the best solution of the bi-objective optimisation problem.
Resumo:
The characteristics of carbon fibre reinforced laminates had widened their use, from aerospace to domestic appliances. A common characteristic is the need of drilling for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, delamination assessment methods based on radiographic data are compared and correlated with mechanical test results (bearing test).
Resumo:
This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimize heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed with basis on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.