3 resultados para complex amplitude pupil filters

em Instituto Politécnico do Porto, Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider a complex-order forced van der Pol oscillator. The complex derivative Dα1jβ, with α, β ∈ ℝ+, is a generalization of the concept of an integer derivative, where α = 1, β = 0. The Fourier transforms of the periodic solutions of the complex-order forced van der Pol oscillator are computed for various values of parameters such as frequency ω and amplitude b of the external forcing, the damping μ, and parameters α and β. Moreover, we consider two cases: (i) b = 1, μ = {1.0, 5.0, 10.0}, and ω = {0.5, 2.46, 5.0, 20.0}; (ii) ω = 20.0, μ = {1.0, 5.0, 10.0}, and b = {1.0, 5.0, 10.0}. We verified that most of the signal energy is concentrated in the fundamental harmonic ω0. We also observed that the fundamental frequency of the oscillations ω0 varies with α and μ. For the range of tested values, the numerical fitting led to logarithmic approximations for system (7) in the two cases (i) and (ii). In conclusion, we verify that by varying the parameter values α and β of the complex-order derivative in expression (7), we accomplished a very effective way of perturbing the dynamical behavior of the forced van der Pol oscillator, which is no longer limited to parameters b and ω.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a complex-order van der Pol oscillator is considered. The complex derivative Dα±ȷβ , with α,β∈R + is a generalization of the concept of integer derivative, where α=1, β=0. By applying the concept of complex derivative, we obtain a high-dimensional parameter space. Amplitude and period values of the periodic solutions of the two versions of the complex-order van der Pol oscillator are studied for variation of these parameters. Fourier transforms of the periodic solutions of the two oscillators are also analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal locomotion is a complex process, involving the central pattern generators (neural networks, located in the spinal cord, that produce rhythmic patterns), the brainstem command systems, the steering and posture control systems and the top layer structures that decide which motor primitive is activated at a given time. Pinto and Golubitsky studied an integer CPG model for legs rhythms in bipeds. It is a four-coupled identical oscillators' network with dihedral symmetry. This paper considers a new complex order central pattern generator (CPG) model for locomotion in bipeds. A complex derivative Dα±jβ, with α, β ∈ ℜ+, j = √-1, is a generalization of the concept of an integer derivative, where α = 1, β = 0. Parameter regions where periodic solutions, identified with legs' rhythms in bipeds, occur, are analyzed. Also observed is the variation of the amplitude and period of periodic solutions with the complex order derivative.