16 resultados para communication networks

em Instituto Politécnico do Porto, Portugal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fieldbus communication networks aim to interconnect sensors, actuators and controllers within process control applications. Therefore, they constitute the foundation upon which real-time distributed computer-controlled systems can be implemented. P-NET is a fieldbus communication standard, which uses a virtual token-passing medium-access-control mechanism. In this paper pre-run-time schedulability conditions for supporting real-time traffic with P-NET networks are established. Essentially, formulae to evaluate the upper bound of the end-to-end communication delay in P-NET messages are provided. Using this upper bound, a feasibility test is then provided to check the timing requirements for accessing remote process variables. This paper also shows how P-NET network segmentation can significantly reduce the end-to-end communication delays for messages with stringent timing requirements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The globalization is a process of economical, social, cultural and political integration motivated by the needs generated by a consumption-orientated society and a set of factors that have led to its development, such as reducing transport costs, the technological advancement and the development of communication networks. However, the phenomenon of globalization has been accompanied by increasing levels of insecurity as a result of various types of threats and transnational crimes that the International Community seeks to control and minimize. Throughout this work, we examined how the globalization process has been developing and how nations are able to maintain security levels consistent with their economical status and social development, without disturbing the normal course of organizations’ economical activity and the well-being of people. From the investigation developed we concluded that, besides the confirmation that economic integration and the opening of markets have influence on internal consumption, market globalization and migrations have been causing modifications in the consumption habits. We also concluded that the security measures implemented by States or by the International Community affect international trade, but do not imply disproportionate costs or significant delays in transactions. Likewise, we concluded that the control measures implemented in international trade are sufficient to ensure the safety of the people and nations, enabling us to confirm two of the three conjectures raised in this study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article discusses the development of an Intelligent Distributed Environmental Decision Support System, built upon the association of a Multi-agent Belief Revision System with a Geographical Information System (GIS). The inherent multidisciplinary features of the involved expertises in the field of environmental management, the need to define clear policies that allow the synthesis of divergent perspectives, its systematic application, and the reduction of the costs and time that result from this integration, are the main reasons that motivate the proposal of this project. This paper is organised in two parts: in the first part we present and discuss the developed Distributed Belief Revision Test-bed — DiBeRT; in the second part we analyse its application to the environmental decision support domain, with special emphasis on the interface with a GIS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

in RoboCup 2007: Robot Soccer World Cup XI

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Secure group communication is a paradigm that primarily designates one-to-many communication security. The proposed works relevant to secure group communication have predominantly considered the whole network as being a single group managed by a central powerful node capable of supporting heavy communication, computation and storage cost. However, a typical Wireless Sensor Network (WSN) may contain several groups, and each one is maintained by a sensor node (the group controller) with constrained resources. Moreover, the previously proposed schemes require a multicast routing support to deliver the rekeying messages. Nevertheless, multicast routing can incur heavy storage and communication overheads in the case of a wireless sensor network. Due to these two major limitations, we have reckoned it necessary to propose a new secure group communication with a lightweight rekeying process. Our proposal overcomes the two limitations mentioned above, and can be applied to a homogeneous WSN with resource-constrained nodes with no need for a multicast routing support. Actually, the analysis and simulation results have clearly demonstrated that our scheme outperforms the previous well-known solutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) have been attracting increasing interests for developing a new generation of embedded systems with great potential for many applications such as surveillance, environment monitoring, emergency medical response and home automation. However, the communication paradigms in WSNs differ from the ones attributed to traditional wireless networks, triggering the need for new communication protocols. In this context, the recently standardised IEEE 802.15.4 protocol presents some potentially interesting features for deployment in wireless sensor network applications, such as power-efficiency, timeliness guarantees and scalability. Nevertheless, when addressing WSN applications with (soft/hard) timing requirements some inherent paradoxes emerge, such as power-efficiency versus timeliness, triggering the need of engineering solutions for an efficient deployment of IEEE 802.15.4 in WSNs. In this technical report, we will explore the most relevant characteristics of the IEEE 802.15.4 protocol for wireless sensor networks and present the most important challenges regarding time-sensitive WSN applications. We also provide some timing performance and analysis of the IEEE 802.15.4 that unveil some directions for resolving the previously mentioned paradoxes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Underwater acoustic networks can be quite effective to establish communication links between autonomous underwater vehicles (AUVs) and other vehicles or control units, enabling complex vehicle applications and control scenarios. A communications and control framework to support the use of underwater acoustic networks and sample application scenarios are described for single and multi-AUV operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Field communication systems (fieldbuses) are widely used as the communication support for distributed computer-controlled systems (DCCS) within all sort of process control and manufacturing applications. There are several advantages in the use of fieldbuses as a replacement for the traditional point-to-point links between sensors/actuators and computer-based control systems, within which the most relevant is the decentralisation and distribution of the processing power over the field. A widely used fieldbus is the WorldFIP, which is normalised as European standard EN 50170. Using WorldFIP to support DCCS, an important issue is “how to guarantee the timing requirements of the real-time traffic?” WorldFIP has very interesting mechanisms to schedule data transfers, since it explicitly distinguishes periodic and aperiodic traffic. In this paper, we describe how WorldFIP handles these two types of traffic, and more importantly, we provide a comprehensive analysis on how to guarantee the timing requirements of the real-time traffic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) emerge as underlying infrastructures for new classes of large-scale networked embedded systems. However, WSNs system designers must fulfill the quality-of-service (QoS) requirements imposed by the applications (and users). Very harsh and dynamic physical environments and extremely limited energy/computing/memory/communication node resources are major obstacles for satisfying QoS metrics such as reliability, timeliness, and system lifetime. The limited communication range of WSN nodes, link asymmetry, and the characteristics of the physical environment lead to a major source of QoS degradation in WSNs-the ldquohidden node problem.rdquo In wireless contention-based medium access control (MAC) protocols, when two nodes that are not visible to each other transmit to a third node that is visible to the former, there will be a collision-called hidden-node or blind collision. This problem greatly impacts network throughput, energy-efficiency and message transfer delays, and the problem dramatically increases with the number of nodes. This paper proposes H-NAMe, a very simple yet extremely efficient hidden-node avoidance mechanism for WSNs. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes that scales to multiple clusters via a cluster grouping strategy that guarantees no interference between overlapping clusters. Importantly, H-NAMe is instantiated in IEEE 802.15.4/ZigBee, which currently are the most widespread communication technologies for WSNs, with only minor add-ons and ensuring backward compatibility with their protocols standards. H-NAMe was implemented and exhaustively tested using an experimental test-bed based on ldquooff-the-shelfrdquo technology, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. H-NAMe effectiveness was also demonstrated in a target tracking application with mobile robots - over a WSN deployment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks (WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the problems with dozens of nodes can be solved while using optimal solvers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The simulation analysis is important approach to developing and evaluating the systems in terms of development time and cost. This paper demonstrates the application of Time Division Cluster Scheduling (TDCS) tool for the configuration of IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs using the simulation analysis, as an illustrative example that confirms the practical applicability of the tool. The simulation study analyses how the number of retransmissions impacts the reliability of data transmission, the energy consumption of the nodes and the end-to-end communication delay, based on the simulation model that was implemented in the Opnet Modeler. The configuration parameters of the network are obtained directly from the TDCS tool. The simulation results show that the number of retransmissions impacts the reliability, the energy consumption and the end-to-end delay, in a way that improving the one may degrade the others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A significant number of process control and factory automation systems use PROFIBUS as the underlying fieldbus communication network. The process of properly setting up a PROFIBUS network is not a straightforward task. In fact, a number of network parameters must be set for guaranteeing the required levels of timeliness and dependability. Engineering PROFIBUS networks is even more subtle when the network includes various physical segments exhibiting heterogeneous specifications, such as bus speed or frame formats, just to mention a few. In this paper we provide underlying theory and a methodology to guarantee the proper operation of such type of heterogeneous PROFIBUS networks. We additionally show how the methodology can be applied to the practical case of PROFIBUS networks containing simultaneously DP (Decentralised Periphery) and PA (Process Automation) segments, two of the most used commercial-off-the-shelf (COTS) PROFIBUS solutions. The importance of the findings is however not limited to this case. The proposed methodology can be generalised to cover other heterogeneous infrastructures. Hybrid wired/wireless solutions are just an example for which an enormous eagerness exists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks including sensor networks. It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When enabling its beacon mode, the protocol makes possible real-time guarantees by using its Guaranteed Time Slot (GTS) mechanism. This paper analyzes the performance of the GTS allocation mechanism in IEEE 802.15.4. The analysis gives a full understanding of the behavior of the GTS mechanism with regards to delay and throughput metrics. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters. We then evaluate the delay bounds guaranteed by an allocation of a GTS using Network Calculus formalism. Finally, based on the analytic results, we analyze the impact of the IEEE 802.15.4 parameters on the throughput and delay bound guaranteed by a GTS allocation. The results of this work pave the way for an efficient dimensioning of an IEEE 802.15.4 cluster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we analyze the performance limits of the slotted CSMA/CA mechanism of IEEE 802.15.4 in the beacon-enabled mode for broadcast transmissions in WSNs. The motivation for evaluating the beacon-enabled mode is due to its flexibility for WSN applications as compared to the non-beacon enabled mode. Our analysis is based on an accurate simulation model of the slotted CSMA/CA mechanism on top of a realistic physical layer, with respect to the IEEE 802.15.4 standard specification. The performance of the slotted CSMA/CA is evaluated and analyzed for different network settings to understand the impact of the protocol attributes (superframe order, beacon order and backoff exponent) on the network performance, namely in terms of throughput (S), average delay (D) and probability of success (Ps). We introduce the concept of utility (U) as a combination of two or more metrics, to determine the best offered load range for an optimal behavior of the network. We show that the optimal network performance using slotted CSMA/CA occurs in the range of 35% to 60% with respect to an utility function proportional to the network throughput (S) divided by the average delay (D).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks (LR-WPAN) including wireless sensor networks (WSNs). It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When in beaconenabled mode, the protocol can provide timeliness guarantees by using its Guaranteed Time Slot (GTS) mechanism. However, power-efficiency and timeliness guarantees are often two antagonistic requirements in wireless sensor networks. The purpose of this paper is to analyze and propose a methodology for setting the relevant parameters of IEEE 802.15.4-compliant WSNs that takes into account a proper trade-off between power-efficiency and delay bound guarantees. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters, using Network Calculus formalism. We then evaluate the delay bound guaranteed by a GTS allocation and express it as a function of the duty cycle. Based on the relation between the delay requirement and the duty cycle, we propose a power-efficient superframe selection method that simultaneously reduces power consumption and enables meeting the delay requirements of real-time flows allocating GTSs. The results of this work may pave the way for a powerefficient management of the GTS mechanism in an IEEE 802.15.4 cluster.