9 resultados para colistin sulphate
em Instituto Politécnico do Porto, Portugal
Resumo:
Mestrado em Engenharia Química
Resumo:
An analytical multiresidue method for the simultaneous determination of seven pesticides in fresh vegetable samples, namely, courgette (Cucurbita pepo), cucumber (Cucumis sativus), lettuce (Lactuca sativa, Romaine and Iceberg varieties) and peppers (Capsicum sp.) is described. The procedure, based on microwave-assisted extraction (MAE) and analysis by liquid chromatography– photodiode array (LC–PDA) detection was applied to four carbamates (carbofuran, carbaryl, chlorpropham and EPTC) and three urea pesticides (monolinuron, metobromuron and linuron). Extraction solvent and the addition of anhydrous sodium sulphate to fresh vegetable homogenate before MAE were the parameters optimised for each commodity. Recovery studies were performed using spiked samples in the range 250–403 µgkg- 1 in each pesticide. The pesticide residues were extracted using 20mL acetonitrile at 60 ºC, for 10 min. Acceptable recoveries and RSDs were attained (overall average recovery of 77.2% and RSDs are lower than 11%). Detection limits ranged between 5.8 µgkg- 1 for carbaryl to 12.3 µgkg- 1 for carbofuran. The analytical protocol was applied for quality control of 41 fresh vegetable samples bought in Oporto Metropolitan Area (North Portugal). None of the samples contained any detectable amounts of the studied compounds.
Resumo:
New chlorpromazine selective electrodes with a tubular arrangement and no internal reference solution are proposed. Selective membranes are of poly(vinyl chloride) (PVC) with the tetraphenylborate•chlorpromazine (TPB•CPZ) ion-exchanger dissolved in o-nitrophenyl octyl ether (oNPOE). Analytical features of the electrodes were evaluated on a single-channel flow assembly having 500 µl injection volumes and flow-rates of 4.5 ml min−1. For a carrier solution of 3.3×10−3Min sodium sulphate, Nernstian responsewas observed over the concentration range 1.0×10−5 to 1.0×10−2 M. Average slopes were about 59mVdecade−1 and squared correlation coefficients were >0.9984. Slight hiper-Nernstian behaviour was observed in buffer solutions of 4.4 pH; average slopes were of 62.06mVdecade−1. The electrode displayed a good selectivity for CPZ, with respect to, several foreign inorganic and organic species. The selective electrodes were successfully applied to the analysis of pure solutions and pharmaceutical preparations. Proposed method allows the analysis of 84 samples h−1, producing wastewaters of low toxicity. The proposed method offers the advantage of simplicity, accuracy, applicability to coloured and turbid samples, and automation feasibility.
Resumo:
Microwave-assisted extraction (MAE) of agar from Gracilaria vermiculophylla, produced in an integrated multitrophic aquaculture (IMTA) system, from Ria de Aveiro (northwestern Portugal), was tested and optimized using response surface methodology. The influence of the MAE operational parameters (extraction time, temperature, solvent volume and stirring speed) on the physical and chemical properties of agar (yield, gel strength, gelling and melting temperatures, as well as, sulphate and 3,6-anhydro-Lgalactose contents) was evaluated in a 2^4 orthogonal composite design. The quality of the extracted agar compared favorably with the attained using traditional extraction (2 h at 85ºC) while reducing drastically extraction time, solvent consumption and waste disposal requirements. Agar MAE optimum results were: an yield of 14.4 ± 0.4%, a gel strength of 1331 ± 51 g/cm2, 40.7 ± 0.2 _C gelling temperature, 93.1 ± 0.5ºC melting temperature, 1.73 ± 0.13% sulfate content and 39.4 ± 0.3% 3,6-anhydro-L-galactose content. Furthermore, this study suggests the feasibility of the exploitation of G. vermiculophylla grew in IMTA systems for agar production.
Resumo:
An optimised version of the Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method for simultaneous determination of 14 organochlorine pesticides in carrots was developed using gas chromatography coupled with electron-capture detector (GC-ECD) and confirmation by gas chromatography tandem mass spectrometry (GC-MS/MS). A citrate-buffered version of QuEChERS was applied for the extraction of the organochlorine pesticides, and for the extract clean-up, primary secondary amine, octadecyl-bonded silica (C18), magnesium sulphate (MgSO4) and graphitized carbon black were used as sorbents. The GC-ECD determination of the target compounds was achieved in less than 20 min. The limits of detection were below the EUmaximum residue limits (MRLs) for carrots, 10–50 μg kg−1, while the limit of quantification did exceed 10 μg kg−1 for hexachlorobenzene (HCB). The introduction of a sonication step was shown to improve the recoveries. The overall average recoveries in carrots, at the four tested levels (60, 80, 100 and 140 μg kg−1), ranged from 66 to 111% with relative standard deviations in the range of 2– 15 % (n03) for all analytes, with the exception of HCB. The method has been applied to the analysis of 21 carrot samples from different Portuguese regions, and β-HCH was the pesticide most frequently found, with concentrations oscillating between less than the limit of quantification to 14.6 μg kg−1. Only one sample had a pesticide residue (β-HCH) above the MRL, 14.6 μg kg−1. This methodology combines the advantages of both QuEChERS and GC-ECD, producing a very rapid, sensitive and reliable procedure which can be applied in routine analytical laboratories.
Resumo:
Human chorionic gonadotropin (hCG) is a key diagnostic marker of pregnancy and an important biomarker for cancers in the prostate, ovaries and bladder and therefore of great importance in diagnosis. For this purpose, a new immunosensor of screen-printed electrodes (SPEs) is presented here. The device was fabricated by introducing a polyaniline (PANI) conductive layer, via in situ electropolymerization of aniline, onto a screen-printed graphene support. The PANI-coated graphene acts as the working electrode of a three terminal electrochemical sensor. The working electrode is functionalised with anti-hCG, by means of a simple process that enabled oriented antibody binding to the PANI layer. The antibody was attached to PANI following activation of the –COOH group at the Fc terminal. Functionalisation of the electrode was analysed and optimized using Electrochemical Impedance Spectroscopy (EIS). Chemical modification of the surface was characterised using Fourier transform infrared, and Raman spectroscopy with confocal microscopy. The graphene–SPE–PANI devices displayed linear responses to hCG in EIS assays from 0.001 to 50 ng mL−1 in real urine, with a detection limit of 0.286 pg mL−1. High selectivity was observed with respect to the presence of the constituent components of urine (urea, creatinine, magnesium chloride, calcium chloride, sodium dihydrogen phosphate, ammonium chloride, potassium sulphate and sodium chloride) at their normal levels, with a negligible sensor response to these chemicals. Successful detection of hCG was also achieved in spiked samples of real urine from a pregnant woman. The immunosensor developed is a promising tool for point-of-care detection of hCG, due to its excellent detection capability, simplicity of fabrication, low-cost, high sensitivity and selectivity.
Resumo:
Using low cost portable devices that enable a single analytical step for screening environmental contaminants is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes that were to be disposed of and by choosing as sensory element a low cost material offering specific response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being dangerous toxins produced by cyanobacteria released into water bodies. The sensory element was a plastic antibody designed by surface imprinting with carefully selected monomers to ensure a specific response. These were designed on the wall of carbon nanotubes, taking advantage of their exceptional electrical properties. The stereochemical ability of the sensory material to detect MCs was checked by preparing blank materials where the imprinting stage was made without the template molecule. The novel sensory material for MCs was introduced in a polymeric matrix and evaluated against potentiometric measurements. Nernstian response was observed from 7.24 × 10−10 to 1.28 × 10−9 M in buffer solution (10 mM HEPES, 150 mM NaCl, pH 6.6), with average slopes of −62 mVdecade−1 and detection capabilities below 1 nM. The blank materials were unable to provide a linear response against log(concentration), showing only a slight potential change towards more positive potentials with increasing concentrations (while that ofthe plastic antibodies moved to more negative values), with a maximum rate of +33 mVdecade−1. The sensors presented good selectivity towards sulphate, iron and ammonium ions, and also chloroform and tetrachloroethylene (TCE) and fast response (<20 s). This concept was successfully tested on the analysis of spiked environmental water samples. The sensors were further applied onto recycled chips, comprehending one site for the reference electrode and two sites for different selective membranes, in a biparametric approach for “in situ” analysis.
Resumo:
O elevado consumo de água associado à escassez deste recurso contribuiu para que alternativas de reutilização/reciclagem de água fossem estudadas que permitam diminuir o seu consumo e minimizar a dependência das indústrias. Monitorizar e avaliar os consumos de água, a nível industrial, é imprescindível para assegurar uma gestão sustentável dos recursos hídricos, sendo este o objetivo da presente dissertação. As alternativas encontradas na unidade industrial em estudo foram a substituição do equipamento sanitário e o aproveitamento do efluente tratado para operações de lavagem e/ou arrefecimento por contacto direto. A maioria do equipamento sanitário não é eficiente, tendo-se proposto a substituição desse sistema por um de menor consumo que permitirá uma poupança de 30 % no consumo de água, que corresponderá a 12 149,37 €/ano, sendo o retorno do investimento estimado em 3 meses. O efluente industrial na entrada da ETAR e nas diferentes etapas - tratamento primário de coagulação/floculação; tratamento secundário ou biológico em SBR; tratamento terciário de coagulação/floculação - foi caracterizado através da medição da temperatura, pH, oxigénio dissolvido e pela determinação da cor, turvação, sólidos suspensos totais (SST), azoto total, carência química de oxigénio (CQO), Carência Bioquímica de Oxigénio ao fim de 5 dias (CBO5) e razão CBO5/CQO. Esta caracterização permitiu avaliar o efluente industrial bruto que se caracteriza por um pH alcalino (8,3 ± 1,7); condutividade baixa (451 ± 200,2 μS/cm); elevada turvação (11 255 ± 8812,8 FTU); cor aparente (63 670 ± 42293,4 PtCo) e cor verdadeira (33 621 ± 19547,9 PtCo) elevadas; teores elevados de CQO (24 753 ± 11806,7 mg/L O2) SST (5 164 ± 3845,5 mg/L) e azoto total (718 mg/L) e um índice de biodegradabilidade baixo (razão CBO5/CQO de 1,4). Este estudo permitiu verificar que a eficiência global do tratamento do efluente foi 82 % na remoção da turvação, 83 % na remoção da cor aparente, 96 % na remoção da cor verdadeira, 85 % na remoção da CQO e 30 % na remoção dos SST. Quanto às eficiências de remoção associadas ao tratamento primário no que diz respeito à turvação, cor aparente, CQO e SST, apresentam valores inferiores aos referidos na literatura para o mesmo tipo de tratamento em efluentes similares. As eficiências de remoção obtidas no tratamento secundário são inferiores às do tratamento primário: turvação, cor aparente, CQO e SST, pelo que procurou-se otimizar a primeira etapa do processo de tratamento Neste estudo de otimização estudou-se a influência de cinco coagulantes – Sulfato de Alumínio, PAX XL – 10, PAX 18, cloreto de ferro e a conjugação de PAX 18 com sulfato de ferro - e seis floculantes – Superfloc A 150, Superfloc A 130, PA 1020, Ambifloc 560, Ambifloc C58 e Rifloc 54 - no tratamento físico-químico do efluente. O PAX 18 e o Ambifloc 560 UUJ foram os que apresentaram as mais elevadas eficiências de remoção (99,85 % na cor, 99,87 % na turvação, 90,12 % na CQO e 99,87 % nos SST). O custo associado a este tratamento é de 1,03 €/m3. Pela comparação com os critérios de qualidade no guia técnico ERSAR, apenas o parâmetro da CQO excede o valor, contudo o valor obtido permite diminuir os custos associados a um tratamento posterior para remoção da CQO remanescente no efluente residual tratado.
Resumo:
In this study a citrate-buffered version of QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method for determination of 14 organochlorine pesticides (OCPs) residues in tamarind peel, fruit and commercial pulp was optimized using gas chromatography (GC) coupled with electron-capture detector (ECD) and confirmation by GC tandem mass spectrometry (GC–MS/MS). Five procedures were tested based on the original QuEChERS method. The best one was achieved with increased time in ultrasonic bath. For the extract clean-up, primary secondary amine (PSA), octadecyl-bonded silica (C18) and magnesium sulphate (MgSO4) were used as sorbents for tamarind fruit and commercial pulp and for peel was also added graphitized carbon black (GCB). The samples mass was optimized according to the best recoveries (1.0 g for peel and fruit; 0.5 g for pulp). The method results showed the matrix-matched calibration curve linearity was r2 > 0.99 for all target analytes in all samples. The overall average recoveries (spiked at 20, 40 and 60 μg kg−1) have been considered satisfactory presenting values between 70 and 115% with RSD of 2–15 % (n = 3) for all analytes, with the exception of HCB (in peel sample). The ranges of limits of detection (LOD) and quantification (LOQ) for OCPs were for peel (LOD: 8.0–21 μg kg−1; LOQ: 27–98 μg kg−1); for fruit (LOD: 4–10 μg kg−1; LOQ: 15–49 μg kg−1) and for commercial pulp (LOD: 2–5 μg kg−1; LOQ: 7–27 μg kg−1). The method was successfully applied in tamarind samples being considered a rapid, sensitive and reliable procedure.