45 resultados para clustering, free-form, ottimizzazione, remeshing
em Instituto Politécnico do Porto, Portugal
Resumo:
A definition of medium voltage (MV) load diagrams was made, based on the data base knowledge discovery process. Clustering techniques were used as support for the agents of the electric power retail markets to obtain specific knowledge of their customers’ consumption habits. Each customer class resulting from the clustering operation is represented by its load diagram. The Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) were applied to an electricity consumption data from a utility client’s database in order to form the customer’s classes and to find a set of representative consumption patterns. The WEACS approach is a clustering ensemble combination approach that uses subsampling and that weights differently the partitions in the co-association matrix. As a complementary step to the WEACS approach, all the final data partitions produced by the different variations of the method are combined and the Ward Link algorithm is used to obtain the final data partition. Experiment results showed that WEACS approach led to better accuracy than many other clustering approaches. In this paper the WEACS approach separates better the customer’s population than Two-step clustering algorithm.
Resumo:
With the electricity market liberalization, the distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity consumers. A fair insight on the consumers’ behavior will permit the definition of specific contract aspects based on the different consumption patterns. In order to form the different consumers’ classes, and find a set of representative consumption patterns we use electricity consumption data from a utility client’s database and two approaches: Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) for combining partitions in a clustering ensemble. While EAC uses a voting mechanism to produce a co-association matrix based on the pairwise associations obtained from N partitions and where each partition has equal weight in the combination process, the WEACS approach uses subsampling and weights differently the partitions. As a complementary step to the WEACS approach, we combine the partitions obtained in the WEACS approach with the ALL clustering ensemble construction method and we use the Ward Link algorithm to obtain the final data partition. The characterization of the obtained consumers’ clusters was performed using the C5.0 classification algorithm. Experiment results showed that the WEACS approach leads to better results than many other clustering approaches.
Resumo:
With the electricity market liberalization, distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity customers. In this environment all consumers are free to choose their electricity supplier. A fair insight on the customer´s behaviour will permit the definition of specific contract aspects based on the different consumption patterns. In this paper Data Mining (DM) techniques are applied to electricity consumption data from a utility client’s database. To form the different customer´s classes, and find a set of representative consumption patterns, we have used the Two-Step algorithm which is a hierarchical clustering algorithm. Each consumer class will be represented by its load profile resulting from the clustering operation. Next, to characterize each consumer class a classification model will be constructed with the C5.0 classification algorithm.
Resumo:
A procura de padrões nos dados de modo a formar grupos é conhecida como aglomeração de dados ou clustering, sendo uma das tarefas mais realizadas em mineração de dados e reconhecimento de padrões. Nesta dissertação é abordado o conceito de entropia e são usados algoritmos com critérios entrópicos para fazer clustering em dados biomédicos. O uso da entropia para efetuar clustering é relativamente recente e surge numa tentativa da utilização da capacidade que a entropia possui de extrair da distribuição dos dados informação de ordem superior, para usá-la como o critério na formação de grupos (clusters) ou então para complementar/melhorar algoritmos existentes, numa busca de obtenção de melhores resultados. Alguns trabalhos envolvendo o uso de algoritmos baseados em critérios entrópicos demonstraram resultados positivos na análise de dados reais. Neste trabalho, exploraram-se alguns algoritmos baseados em critérios entrópicos e a sua aplicabilidade a dados biomédicos, numa tentativa de avaliar a adequação destes algoritmos a este tipo de dados. Os resultados dos algoritmos testados são comparados com os obtidos por outros algoritmos mais “convencionais" como o k-médias, os algoritmos de spectral clustering e um algoritmo baseado em densidade.
Resumo:
A survey was conducted among students of the Accounting and Administration undergraduate degree at ISCAP – IPP (School of Accounting and Administration of Polytechnic Institute of Porto) in order to understand their perception value of their course Business Simulation (BS). This course is provided in a business environment where students can learn by doing through the management of a company as they were in the real life, but risk-free. The learning tasks are provided in an action-oriented format to maximize the learning process. Students learn by doing a set of tasks every session and have also to produce reports and presentations during the course. BS is part of the undergraduate degree of Accounting and Administration at ISCAP – IPP since the beginning of 2003. The questionnaire we used captured the students’ perception about general and specific skills and competencies considered important for managers and accountants in the real life, about the methodology used in the course, which is totally different from the traditional form, and also about the adequacy of the course included as part of the undergraduate degree. The results showed that students’ perception is highly positive and almost all of them think they improve the skills needed for a job during the course. These results are consistent with [1] Adler and Milne’s research in which the authors found that students agree with the use of action-oriented learning tasks in order to provide them the needed attitudes, skills, and knowledge. The improvement of group skills is the most important issue for students, which can be understandable as BS is the only course from the degree in Accounting and Administration they really have to work in groups.
Resumo:
This paper deals with the establishment of a characterization methodology of electric power profiles of medium voltage (MV) consumers. The characterization is supported on the data base knowledge discovery process (KDD). Data Mining techniques are used with the purpose of obtaining typical load profiles of MV customers and specific knowledge of their customers’ consumption habits. In order to form the different customers’ classes and to find a set of representative consumption patterns, a hierarchical clustering algorithm and a clustering ensemble combination approach (WEACS) are used. Taking into account the typical consumption profile of the class to which the customers belong, new tariff options were defined and new energy coefficients prices were proposed. Finally, and with the results obtained, the consequences that these will have in the interaction between customer and electric power suppliers are analyzed.
Resumo:
The present research paper presents five different clustering methods to identify typical load profiles of medium voltage (MV) electricity consumers. These methods are intended to be used in a smart grid environment to extract useful knowledge about customer’s behaviour. The obtained knowledge can be used to support a decision tool, not only for utilities but also for consumers. Load profiles can be used by the utilities to identify the aspects that cause system load peaks and enable the development of specific contracts with their customers. The framework presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partition, which is supported by cluster validity indices. The process ends with the analysis of the discovered knowledge. To validate the proposed framework, a case study with a real database of 208 MV consumers is used.
Resumo:
The growing importance and influence of new resources connected to the power systems has caused many changes in their operation. Environmental policies and several well know advantages have been made renewable based energy resources largely disseminated. These resources, including Distributed Generation (DG), are being connected to lower voltage levels where Demand Response (DR) must be considered too. These changes increase the complexity of the system operation due to both new operational constraints and amounts of data to be processed. Virtual Power Players (VPP) are entities able to manage these resources. Addressing these issues, this paper proposes a methodology to support VPP actions when these act as a Curtailment Service Provider (CSP) that provides DR capacity to a DR program declared by the Independent System Operator (ISO) or by the VPP itself. The amount of DR capacity that the CSP can assure is determined using data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 33 bus distribution network.
Resumo:
This paper presents an integrated system that helps both retail companies and electricity consumers on the definition of the best retail contracts and tariffs. This integrated system is composed by a Decision Support System (DSS) based on a Consumer Characterization Framework (CCF). The CCF is based on data mining techniques, applied to obtain useful knowledge about electricity consumers from large amounts of consumption data. This knowledge is acquired following an innovative and systematic approach able to identify different consumers’ classes, represented by a load profile, and its characterization using decision trees. The framework generates inputs to use in the knowledge base and in the database of the DSS. The rule sets derived from the decision trees are integrated in the knowledge base of the DSS. The load profiles together with the information about contracts and electricity prices form the database of the DSS. This DSS is able to perform the classification of different consumers, present its load profile and test different electricity tariffs and contracts. The final outputs of the DSS are a comparative economic analysis between different contracts and advice about the most economic contract to each consumer class. The presentation of the DSS is completed with an application example using a real data base of consumers from the Portuguese distribution company.
Resumo:
In real optimization problems, usually the analytical expression of the objective function is not known, nor its derivatives, or they are complex. In these cases it becomes essential to use optimization methods where the calculation of the derivatives, or the verification of their existence, is not necessary: the Direct Search Methods or Derivative-free Methods are one solution. When the problem has constraints, penalty functions are often used. Unfortunately the choice of the penalty parameters is, frequently, very difficult, because most strategies for choosing it are heuristics strategies. As an alternative to penalty function appeared the filter methods. A filter algorithm introduces a function that aggregates the constrained violations and constructs a biobjective problem. In this problem the step is accepted if it either reduces the objective function or the constrained violation. This implies that the filter methods are less parameter dependent than a penalty function. In this work, we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of the simplex method and filter methods. This method does not compute or approximate any derivatives, penalty constants or Lagrange multipliers. The basic idea of simplex filter algorithm is to construct an initial simplex and use the simplex to drive the search. We illustrate the behavior of our algorithm through some examples. The proposed methods were implemented in Java.
Resumo:
The filter method is a technique for solving nonlinear programming problems. The filter algorithm has two phases in each iteration. The first one reduces a measure of infeasibility, while in the second the objective function value is reduced. In real optimization problems, usually the objective function is not differentiable or its derivatives are unknown. In these cases it becomes essential to use optimization methods where the calculation of the derivatives or the verification of their existence is not necessary: direct search methods or derivative-free methods are examples of such techniques. In this work we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of simplex and filter methods. This method neither computes nor approximates derivatives, penalty constants or Lagrange multipliers.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
As more and more digital resources are available, finding the appropriate document becomes harder. Thus, a new kind of tools, able to recommend the more appropriated resources according the user needs, becomes even more necessary. The current project implements an intelligent recommendation system for elearning platforms. The recommendations are based on one hand, the performance of the user during the training process and on the other hand, the requests made by the user in the form of search queries. All information necessary for decision-making process of recommendation will be represented in the user model. This model will be updated throughout the target user interaction with the platform.
Resumo:
O aumento do número de recursos digitais disponíveis dificulta a tarefa de pesquisa dos recursos mais relevantes, no sentido de se obter o que é mais relevante. Assim sendo, um novo tipo de ferramentas, capaz de recomendar os recursos mais apropriados às necessidades do utilizador, torna-se cada vez mais necessário. O objetivo deste trabalho de I&D é o de implementar um módulo de recomendação inteligente para plataformas de e-learning. As recomendações baseiam-se, por um lado, no perfil do utilizador durante o processo de formação e, por outro lado, nos pedidos efetuados pelo utilizador, através de pesquisas [Tavares, Faria e Martins, 2012]. O e-learning 3.0 é um projeto QREN desenvolvido por um conjunto de organizações e tem com objetivo principal implementar uma plataforma de e-learning. Este trabalho encontra-se inserido no projeto e-learning 3.0 e consiste no desenvolvimento de um módulo de recomendação inteligente (MRI). O MRI utiliza diferentes técnicas de recomendação já aplicadas noutros sistemas de recomendação. Estas técnicas são utilizadas para criar um sistema de recomendação híbrido direcionado para a plataforma de e-learning. Para representar a informação relevante, sobre cada utilizador, foi construído um modelo de utilizador. Toda a informação necessária para efetuar a recomendação será representada no modelo do utilizador, sendo este modelo atualizado sempre que necessário. Os dados existentes no modelo de utilizador serão utilizados para personalizar as recomendações produzidas. As recomendações estão divididas em dois tipos, a formal e a não formal. Na recomendação formal o objetivo é fazer sugestões relacionadas a um curso específico. Na recomendação não-formal, o objetivo é fazer sugestões mais abrangentes onde as recomendações não estão associadas a nenhum curso. O sistema proposto é capaz de sugerir recursos de aprendizagem, com base no perfil do utilizador, através da combinação de técnicas de similaridade de palavras, um algoritmo de clustering e técnicas de filtragem [Tavares, Faria e Martins, 2012].
Resumo:
Two chromatographic methods, gas chromatography with flow ionization detection (GC–FID) and liquid chromatography with ultraviolet detection (LC–UV), were used to determine furfuryl alcohol in several kinds of foundry resins, after application of an optimised extraction procedure. The GC method developed gave feasibility that did not depend on resin kind. Analysis by LC was suitable just for furanic resins. The presence of interference in the phenolic resins did not allow an appropriate quantification by LC. Both methods gave accurate and precise results. Recoveries were >94%; relative standard deviations were ≤7 and ≤0.3%, respectively for GC and LC methods. Good relative deviations between the two methods were found (≤3%).