3 resultados para chiral separations

em Instituto Politécnico do Porto, Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Imidazolidin-4-ones are commonly employed as skeletal modifications in bioactive oligopeptides, either as proline surrogates or for protection of the N-terminal amino acid against aminopeptidase-catalysed hydrolysis . We have been working on the synthesis of imidazolidin-4-ones of the antimalarial primaquine , through acylation of primaquine with an α-amino acid and subsequent reaction of the resulting α-aminoamide with a ketone or aldehyde. Thus, when using racemic primaquine, an optically pure chiral α-amino acid and an aldehyde as starting materials, four imidazolidin-4-one diastereomers are to be expected (Scheme 1). However, we have recently observed that imidazolidin-4-one synthesis was stereoselective when 2-carboxybenzaldehyde (2CBA)* was used, as only two diastereomers were produced2. Computational studies have shown that the imine formed prior to ring closure had, for structures derived from 2CBA, a quasi-cyclic rigid structure2. This rigid conformation is stabilized by an intramolecular hydrogen bond involving the C=O oxygen atom of the 2-carboxyl substituent in 2CBA and the N-H group of the α-amino amide moiety2. These findings led us to postulate that the 2-carbonyl substituent in the benzaldehyde moiety was the key for the stereoselective synthesis of the imidazolidin-4-ones2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Química. Ramo optimização energética na indústria química

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interest for environmental fate assessment of chiral pharmaceuticals is increasing and enantioselective analytical methods are mandatory. This study presents an enantioselective analytical method for the quantification of seven pairs of enantiomers of pharmaceuticals and a pair of a metabolite. The selected chiral pharmaceuticals belong to three different therapeutic classes, namely selective serotonin reuptake inhibitors (venlafaxine, fluoxetine and its metabolite norfluoxetine), beta-blockers (alprenolol, bisoprolol, metoprolol, propranolol) and a beta2-adrenergic agonist (salbutamol). The analytical method was based on solid phase extraction followed by liquid chromatography tandem mass spectrometry with a triple quadrupole analyser. Briefly, Oasis® MCX cartridges were used to preconcentrate 250 mL of water samples and the reconstituted extracts were analysed with a Chirobiotic™ V under reversed mode. The effluent of a laboratory-scale aerobic granular sludge sequencing batch reactor (AGS-SBR) was used to validate the method. Linearity (r2 > 0.99), selectivity and sensitivity were achieved in the range of 20–400 ng L−1 for all enantiomers, except for norfluoxetine enantiomers which range covered 30–400 ng L−1. The method detection limits were between 0.65 and 11.5 ng L−1 and the method quantification limits were between 1.98 and 19.7 ng L−1. The identity of all enantiomers was confirmed using two MS/MS transitions and its ion ratios, according to European Commission Decision 2002/657/EC. This method was successfully applied to evaluate effluents of wastewater treatment plants (WWTP) in Portugal. Venlafaxine and fluoxetine were quantified as non-racemic mixtures (enantiomeric fraction ≠ 0.5). The enantioselective validated method was able to monitor chiral pharmaceuticals in WWTP effluents and has potential to assess the enantioselective biodegradation in bioreactors. Further application in environmental matrices as surface and estuarine waters can be exploited.