4 resultados para causal inference

em Instituto Politécnico do Porto, Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho de pesquisa e desenvolvimento tem como fundamento principal o Conceito de Controlo por Lógica Difusa. Utilizando as ferramentas do software Matlab, foi possível desenvolver um controlador com base na inferência difusa que permitisse controlar qualquer tipo de sistema físico real, independentemente das suas características. O Controlo Lógico Difuso, do inglês “Fuzzy Control”, é um tipo de controlo muito particular, pois permite o uso simultâneo de dados numéricos com variáveis linguísticas que tem por base o conhecimento heurístico dos sistemas a controlar. Desta forma, consegue-se quantificar, por exemplo, se um copo está “meio cheio” ou “meio vazio”, se uma pessoa é “alta” ou “baixa”, se está “frio” ou “muito frio”. O controlo PID é, sem dúvida alguma, o controlador mais amplamente utilizado no controlo de sistemas. Devido à sua simplicidade de construção, aos reduzidos custos de aplicação e manutenção e aos resultados que se obtêm, este controlador torna-se a primeira opção quando se pretende implementar uma malha de controlo num determinado sistema. Caracterizado por três parâmetros de ajuste, a saber componente proporcional, integral e derivativa, as três em conjunto permitem uma sintonia eficaz de qualquer tipo de sistema. De forma a automatizar o processo de sintonia de controladores e, aproveitando o que melhor oferece o Controlo Difuso e o Controlo PID, agrupou-se os dois controladores, onde em conjunto, como poderemos constatar mais adiante, foram obtidos resultados que vão de encontro com os objectivos traçados. Com o auxílio do simulink do Matlab, foi desenvolvido o diagrama de blocos do sistema de controlo, onde o controlador difuso tem a tarefa de supervisionar a resposta do controlador PID, corrigindo-a ao longo do tempo de simulação. O controlador desenvolvido é denominado por Controlador FuzzyPID. Durante o desenvolvimento prático do trabalho, foi simulada a resposta de diversos sistemas à entrada em degrau unitário. Os sistemas estudados são na sua maioria sistemas físicos reais, que representam sistemas mecânicos, térmicos, pneumáticos, eléctricos, etc., e que podem ser facilmente descritos por funções de transferência de primeira, segunda e de ordem superior, com e sem atraso.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O panorama atual da emergência e socorro de primeira linha em Portugal, carateriza-se por uma grande aposta ao longo dos últimos anos num incremento contínuo da qualidade e da eficiência que estes serviços prestam às populações locais. Com vista à prossecução do objetivo de melhoria contínua dos serviços, foram realizados ao longo dos últimos anos investimentos avultados ao nível dos recursos técnicos e ao nível da contratação e formação de recursos humanos altamente qualificados. Atualmente as instituições que prestam socorro e emergência de primeira linha estão bem dotadas ao nível físico e ao nível humano dos recursos necessários para fazerem face aos mais diversos tipos de ocorrências. Contudo, ao nível dos sistemas de informação de apoio à emergência e socorro de primeira linha, verifica-se uma inadequação (e por vezes inexistência) de sistemas informáticos capazes de suportar convenientemente o atual contexto de exigência e complexidade da emergência e socorro. Foi feita ao longo dos últimos anos, uma forte aposta na melhoria dos recursos físicos e dos recursos humanos encarregues da resposta àsemergência de primeira linha, mas descurou-se a área da gestão e análise da informação sobre as ocorrências, assim como, o delinear de possíveis estratégias de prevenção que uma análise sistematizada da informação sobre as ocorrências possibilita. Nas instituições de emergência e socorro de primeira linha em Portugal (bombeiros, proteção civil municipal, PSP, GNR, polícia municipal), prevalecem ainda hoje os sistemas informáticos apenas para o registo das ocorrências à posteriori e a total inexistência de sistemas de registo de informação e de apoio à decisão na alocação de recursos que operem em tempo real. A generalidade dos sistemas informáticos atualmente existentes nas instituições são unicamente de sistemas de backoffice, que não aproveitam a todas as potencialidades da informação operacional neles armazenada. Verificou-se também, que a geo-localização por via informática dos recursos físicos e de pontos de interesse relevantes em situações críticas é inexistente a este nível. Neste contexto, consideramos ser possível e importante alinhar o nível dos sistemas informáticos das instituições encarregues da emergência e socorro de primeira linha, com o nível dos recursos físicos e humanos que já dispõem atualmente. Dado que a emergência e socorro de primeira linha é um domínio claramente elegível para a aplicação de tecnologias provenientes dos domínios da inteligência artificial (nomeadamente sistemas periciais para apoio à decisão) e da geo-localização, decidimos no âmbito desta tese desenvolver um sistema informático capaz de colmatar muitas das lacunas por nós identificadas ao nível dos sistemas informáticos destas instituições. Pretendemos colocar as suas plataformas informáticas num nível similar ao dos seus recursos físicos e humanos. Assim, foram por nós identificadas duas áreas chave onde a implementação de sistemas informáticos adequados às reais necessidades das instituições podem ter um impacto muito proporcionar uma melhor gestão e otimização dos recursos físicos e humanos. As duas áreas chave por nós identificadas são o suporte à decisão na alocação dos recursos físicos e a geolocalização dos recursos físicos, das ocorrências e dos pontos de interesse. Procurando fornecer uma resposta válida e adequada a estas duas necessidades prementes, foi desenvolvido no âmbito desta tese o sistema CRITICAL DECISIONS. O sistema CRITICAL DECISIONS incorpora um conjunto de funcionalidades típicas de um sistema pericial, para o apoio na decisão de alocação de recursos físicos às ocorrências. A inferência automática dos recursos físicos, assenta num conjunto de regra de inferência armazenadas numa base de conhecimento, em constante crescimento e atualização, com base nas respostas bem sucedidas a ocorrências passadas. Para suprimir as carências aos nível da geo-localização dos recursos físicos, das ocorrências e dos pontos de interesse, o sistema CRITICAL DECISIONS incorpora também um conjunto de funcionalidades de geo-localização. Estas permitem a geo-localização de todos os recursos físicos da instituição, a geo-localização dos locais e as áreas das várias ocorrências, assim como, dos vários tipos de pontos de interesse. O sistema CRITICAL DECISIONS visa ainda suprimir um conjunto de outras carências por nós identificadas, ao nível da gestão documental (planos de emergência, plantas dos edifícios) , da comunicação, da partilha de informação entre as instituições de socorro e emergência locais, da contabilização dos tempos de serviço, entre outros. O sistema CRITICAL DECISIONS é o culminar de um esforço colaborativo e contínuo com várias instituições, responsáveis pela emergência e socorro de primeira linha a nível local. Esperamos com o sistema CRITICAL DECISIONS, dotar estas instituições de uma plataforma informática atual, inovadora, evolutiva, com baixos custos de implementação e de operação, capaz de proporcionar melhorias contínuas e significativas ao nível da qualidade da resposta às ocorrências, das capacidades de prevenção e de uma melhor otimização de todos os tipos de recursos que têm ao dispor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Penalty and Barrier methods are normally used to solve Nonlinear Optimization Problems constrained problems. The problems appear in areas such as engineering and are often characterised by the fact that involved functions (objective and constraints) are non-smooth and/or their derivatives are not know. This means that optimization methods based on derivatives cannot net used. A Java based API was implemented, including only derivative-free optimizationmethods, to solve both constrained and unconstrained problems, which includes Penalty and Barriers methods. In this work a new penalty function, based on Fuzzy Logic, is presented. This function imposes a progressive penalization to solutions that violate the constraints. This means that the function imposes a low penalization when the violation of the constraints is low and a heavy penalisation when the violation is high. The value of the penalization is not known in beforehand, it is the outcome of a fuzzy inference engine. Numerical results comparing the proposed function with two of the classic penalty/barrier functions are presented. Regarding the presented results one can conclude that the prosed penalty function besides being very robust also exhibits a very good performance.