16 resultados para barium titanate nanotubes
em Instituto Politécnico do Porto, Portugal
Resumo:
This study focused on the development of a sensitive enzymatic biosensor for the determination of pirimicarb pesticide based on the immobilization of laccase on composite carbon paste electrodes. Multi- walled carbon nanotubes(MWCNTs)paste electrode modified by dispersion of laccase(3%,w/w) within the optimum composite matrix(60:40%,w/w,MWCNTs and paraffin binder)showed the best performance, with excellent electron transfer kinetic and catalytic effects related to the redox process of the substrate4- aminophenol. No metal or anti-interference membrane was added. Based on the inhibition of laccase activity, pirimicarb can be determined in the range 9.90 ×10- 7 to 1.15 ×10- 5 molL 1 using 4- aminophenol as substrate at the optimum pH of 5.0, with acceptable repeatability and reproducibility (relative standard deviations lower than 5%).The limit of detection obtained was 1.8 × 10-7 molL 1 (0.04 mgkg 1 on a fresh weight vegetable basis).The high activity and catalytic properties of the laccase- based biosensor are retained during ca. one month. The optimized electroanalytical protocol coupled to the QuEChERS methodology were applied to tomato and lettuce samples spiked at three levels; recoveries ranging from 91.0±0.1% to 101.0 ± 0.3% were attained. No significant effects in the pirimicarb electro- analysis were observed by the presence of pro-vitamin A, vitamins B1 and C,and glucose in the vegetable extracts. The proposed biosensor- based pesticide residue methodology fulfills all requisites to be used in implementation of food safety programs.
Resumo:
Using low cost portable devices that enable a single analytical step for screening environmental contaminants is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes that were to be disposed of and by choosing as sensory element a low cost material offering specific response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being dangerous toxins produced by cyanobacteria released into water bodies. The sensory element was a plastic antibody designed by surface imprinting with carefully selected monomers to ensure a specific response. These were designed on the wall of carbon nanotubes, taking advantage of their exceptional electrical properties. The stereochemical ability of the sensory material to detect MCs was checked by preparing blank materials where the imprinting stage was made without the template molecule. The novel sensory material for MCs was introduced in a polymeric matrix and evaluated against potentiometric measurements. Nernstian response was observed from 7.24 × 10−10 to 1.28 × 10−9 M in buffer solution (10 mM HEPES, 150 mM NaCl, pH 6.6), with average slopes of −62 mVdecade−1 and detection capabilities below 1 nM. The blank materials were unable to provide a linear response against log(concentration), showing only a slight potential change towards more positive potentials with increasing concentrations (while that ofthe plastic antibodies moved to more negative values), with a maximum rate of +33 mVdecade−1. The sensors presented good selectivity towards sulphate, iron and ammonium ions, and also chloroform and tetrachloroethylene (TCE) and fast response (<20 s). This concept was successfully tested on the analysis of spiked environmental water samples. The sensors were further applied onto recycled chips, comprehending one site for the reference electrode and two sites for different selective membranes, in a biparametric approach for “in situ” analysis.
Resumo:
Microcystin-LR (MC-LR) is a dangerous toxin found in environmental waters, quantified by high performance liquid chromatography and/or enzyme-linked immunosorbent assays. Quick, low cost and on-site analysis is thus required to ensure human safety and wide screening programs. This work proposes label-free potentiometric sensors made of solid-contact electrodes coated with a surface imprinted polymer on the surface of Multi-Walled Carbon NanoTubes (CNTs) incorporated in a polyvinyl chloride membrane. The imprinting effect was checked by using non-imprinted materials. The MC-LR sensitive sensors were evaluated, characterized and applied successfully in spiked environmental waters. The presented method offered the advantages of low cost, portability, easy operation and suitability for adaptation to flow methods.
Resumo:
A novel artificial antibody for troponin T (TnT) was synthesized by molecular imprint (MI) on the surface of multiwalled carbon nanotubes (MWCNT). This was done by attaching TnT to the MWCNT surface, and filling the vacant spaces by polymerizing under mild conditions acrylamide (monomer) in N,N′-methylenebisacrylamide (cross-linker) and ammonium persulphate (initiator). After removing the template, the obtained biomaterial was able to rebind TnT and discriminate it among other interfering species. Stereochemical recognition of TnT was confirmed by the non-rebinding ability displayed by non-imprinted (NI) materials, obtained by imprinting without a template. SEM and FTIR analysis confirmed the surface modification of the MWCNT. The ability of this biomaterial to rebind TnT was confirmed by including it as electroactive compound in a PVC/plasticizer mixture coating a wire of silver, gold or titanium. Anionic slopes of 50 mV decade−1 were obtained for the gold wire coated with MI-based membranes dipped in HEPES buffer of pH 7. The limit of detection was 0.16 μg mL−1. Neither the NI-MWCNT nor the MWCNT showed the ability to recognize the template. Good selectivity was observed against creatinine, sucrose, fructose, myoglobin, sodium glutamate, thiamine and urea. The sensor was tested successfully on serum samples. It is expected that this work opens new horizons on the design of new artificial antibodies for complex protein structures.
Resumo:
Celiac disease is a gluten-induced autoimmune enteropathy characterized by the presence of tissue tranglutaminase (tTG) autoantibodies. A disposable electrochemical immunosensor (EI) for the detection of IgA and IgG type anti-tTG autoantibodies in real patient’s samples is presented. Screen-printed carbon electrodes (SPCE) nanostructurized with carbon nanotubes and gold nanoparticles were used as the transducer surface. This transducer exhibits the excellent characteristics of carbon–metal nanoparticle hybrid conjugation and led to the amplification of the immunological interaction. The immunosensing strategy consisted of the immobilization of tTG on the nanostructured electrode surface followed by the electrochemical detection of the autoantibodies present in the samples using an alkaline phosphatase (AP) labelled anti-human IgA or IgG antibody. The analytical signal was based on the anodic redissolution of enzymatically generated silver by cyclic voltammetry. The results obtained were corroborated with a commercial ELISA kit indicating that the electrochemical immunosensor is a trustful analytical screening tool.
Resumo:
No presente trabalho pretendeu-se estudar o comportamento da ciprofloxacina por técnicas voltamétricas e desenvolver novos sensores para monitorizar a ciprofloxacina em águas residuais. A investigação realizada contemplou essencialmente, os seguintes aspectos: estudo da influência do pH no comportamento voltamétrico da ciprofloxacina e comparação entre o eléctrodo de carbono vítreo e alguns eléctrodos modificados. O estudo foi efectuado em voltametria cíclica a diferentes velocidades de varrimento e também em voltametria de impulso diferencial. O estudo mostrou que o eléctrodo modificado com nanotubos de carbono permitiu a quantificação de níveis mais baixos de ciprofloxacina. O novo sensor desenvolvido foi utilizado em águas do rio Douro e rio Leça com o objectivo de monitorizar a concentração de ciprofloxacina. Traçaram-se curvas de calibração directa e por adição padrão de quantidades crescentes de ciprofloxacina. Os estudos efectuados com as águas do rio Douro e rio Leça foram recolhidos próximos da foz do rio estas amostras deveriam ser recolhidas em vários pontos do rio para se poder fazer uma comparação de resultados. Os estudos de recuperação permitiram verificar que a percentagem de recuperação para o rio Douro se situava nos 90% e as do rio Leça nos 75%, pelo método da calibração directa. Usando o método da adição padrão a recuperações foram de 99% para o rio Douro e 90% para o rio Leça. Os estudos em curso permitem concluir que este sensor poderá ser aplicado na monitorização da ciprofloxacina em amostras ambientais.
Resumo:
A nanohybrid electrochemical transducer surface was developed using carbon and gold nanomaterials. The strategy relayed on casting multiwalled carbon nanotubes or carbon nanofibers onto a screen-printed carbon electrode surface, followed by in situ generation of gold nanoparticles by electrochemical deposition of ionic gold, in a reproducible manner. These transducers, so fabricated, were characterized using both electrochemical and microscopic techniques. Biofunctionality was evaluated using the streptavidin-biotin interaction system as the biological reaction model. These platforms allow to achieve low detection limits (in the order of pmoles), are reproducible and stable at least for a month after their preparation, being a perfect candidate to be used as transducer of different sensor devices.
Resumo:
A flow injection analysis (FIA) system comprising a cysteine selective electrode as detection system was developed for determination of this amino acid in pharmaceuticals. Several electrodes were constructed for this purpose, having PVC membranes with different ionic exchangers and mediator solvents. Better working characteristics were attained with membranes comprising o-nitrophenyl octyl ether as mediator solvent and a tetraphenylborate based ionic-sensor. Injection of 500 µL standard solutions into an ionic strength adjuster carrier (3x10-3 M) of barium chloride flowing at 2.4mL min-1, showed linearity ranges from 5.0x10-5 to 5.0x10-3 M, with slopes of 76.4±0.6mV decade-1 and R2>0.9935. Slope decreased significantly under the requirement of a pH adjustment, selected at 4.5. Interference of several compounds (sodium, potassium, magnesium, barium, glucose, fructose, and sucrose) was estimated by potentiometric selectivity coefficients and considered negligible. Analysis of real samples were performed and considered accurate, with a relative error to an independent method of +2.7%.
Resumo:
Enrofloxacin (ENR) is an antimicrobial used both in humans and in food producing species. Its control is required in farmed species and their surroundings in order to reduce the prevalence of antibiotic resistant bacteria. Thus, a new biomimetic sensor enrofloxacin is presented. An artificial host was imprinted in specific polymers. These were dispersed in 2-nitrophenyloctyl ether and entrapped in a poly(vinyl chloride) matrix. The potentiometric sensors exhibited a near-Nernstian response. Slopes expressing mVΔlog([ENR]/M) varied within 48–63. The detection limits ranged from 0.28 to 1.01 µg mL 1. Sensors were independent from the pH of test solutions within 4–7. Good selectivity was observed toward potassium, calcium, barium, magnesium, glycine, ascorbic acid, creatinine, norfloxacin, ciprofloxacin, and tetracycline. In flowing media, the biomimetic sensors presented good reproducibility (RSD of ±0.7%), fast response, good sensitivity (47 mV/Dlog([ENR]/ M), wide linear range (1.0×10-5–1.0×10-3 M), low detection limit (0.9 µg mL-1), and a stable baseline for a 5×10-2 M acetate buffer (pH 4.7) carrier. The sensors were used to analyze fish samples. The method offered the advantages of simplicity, accuracy, and automation feasibility. The sensing membrane may contribute to the development of small devices allowing in vivo measurements of enrofloxacin or parent-drugs.
Resumo:
An electrochemical sensor has been developed for the determination of the herbicide bentazone, based on a GC electrode modified by a combination of multiwalled carbon nanotubes (MWCNT) with b-cyclodextrin (b-CD) incorporated in a polyaniline film. The results indicate that the b-CD/MWCNT modified GC electrode exhibits efficient electrocatalytic oxidation of bentazone with high sensitivity and stability. A cyclic voltammetric method to determine bentazone in phosphate buffer solution at pH 6.0, was developed, without any previous extraction, clean-up, or derivatization steps, in the range of 10–80 mmolL 1, with a detection limit of 1.6 mmolL 1 in water. The results were compared with those obtained by an established HPLC technique. No statistically significant differences being found between both methods.
Resumo:
A Norfloxacina (NFX) é um antibiótico antibacteriano indicado para combater bactérias Gram-negativas e amplamente utilizado para o tratamento de infeções no trato respiratório e urinário. Com a necessidade de realizar estudos clínicos e farmacológicos esenvolveram-se métodos de análise rápida e sensitiva para a determinação da Norfloxacina. Neste trabalho foi desenvolvido um novo sensor eletroquímico sensível e seletivo para a deteção da NFX. O sensor foi construído a partir de modificações efetuadas num elétrodo de carbono vítreo. Inicialmente o elétrodo foi modificado com a deposição de uma suspensão de nanotubos de carbono de paredes múltiplas (MWCNT) de modo a aumentar a sensibilidade de resposta analítica. De seguida um filme polímerico molecularmente impresso (MIP) foi preparado por eletrodeposição, a partir de uma solução contendo pirrol (monómero funcional) e NFX (template). Um elétrodo de controlo não impresso foi também preparado (NIP). Estudouse e caraterizou-se a resposta eletroquímica do sensor para a oxidação da NFX por voltametria de onda quadrada. Foram optimizados diversos parâmetros experimentais, tais como, condições ótimas de polimerização, condições de incubação e condições de extração. O sensor apresenta um comportamento linear entre a intensidade da corrente do pico e o logaritmo da concentração de NFX na gama entre 0,1 e 8μM. Os resultados obtidos apresentam boa precisão, com repetibilidade inferior a 6% e reprodutibilidade inferior a 9%. Foi calculado a partir da curva de calibração um limite de deteção de 0,2 μM O método desenvolvido é seletivo, rápido e de fácil manuseamento. O sensor molecularmente impresso foi aplicado com sucesso na deteção da NFX em amostras de urina real e água.
Resumo:
Enrofloxacin (ENR) is an antimicrobial used both in humans and in food producing species. Its control is required in farmed species and their surroundings in order to reduce the prevalence of antibiotic resistant bacteria. Thus, a new biomimetic sensor enrofloxacin is presented. An artificial host was imprinted in specific polymers. These were dispersed in 2-nitrophenyloctyl ether and entrapped in a poly(vinyl chloride) matrix. The potentiometric sensors exhibited a near-Nernstian response. Slopes expressing mV/Δlog([ENR]/M) varied within 48–63. The detection limits ranged from 0.28 to 1.01 µg mL−1. Sensors were independent from the pH of test solutions within 4–7. Good selectivity was observed toward potassium, calcium, barium, magnesium, glycine, ascorbic acid, creatinine, norfloxacin, ciprofloxacin, and tetracycline. In flowing media, the biomimetic sensors presented good reproducibility (RSD of ± 0.7%), fast response, good sensitivity (47 mV/Δlog([ENR]/M), wide linear range (1.0 × 10−5–1.0 × 10−3 M), low detection limit (0.9 µg mL−1), and a stable baseline for a 5 × 10−2 M acetate buffer (pH 4.7) carrier. The sensors were used to analyze fish samples. The method offered the advantages of simplicity, accuracy, and automation feasibility. The sensing membrane may contribute to the development of small devices allowing in vivo measurements of enrofloxacin or parent-drugs.
Resumo:
A novel electrochemical sensor for ochratoxin A (OTA) detection was fabricated through the modification of a glassy carbon electrode (GCE) with multiwalled carbon nanotubes (MWCNTs) and a molecularly imprinted polymer (MIP). The MWCNTs dramatically promoted the sensitivity of the developed sensor, while polypyrrole (PPy) imprinted with OTA served as the selective recognition element. The imprinted PPy film was prepared by electropolymerization of pyrrole in the presence of OTA as a template molecule via cyclic voltammetry (CV). The electrochemical oxidation of OTA at the developed sensor was investigated by CV and differential pulse voltammetry (DPV). The developed MIP/MWCNT/GCE sensor showed a linear relationship, when using DPV, between peak current intensity and OTA concentration in the range between 0.050 and 1.0 μM, with limits of detection (LOD) and quantification of 0.0041 μM (1.7 μg/L) and 0.014 μM (5.7 μg/L) respectively. With the developed sensor precise results were obtained; relative standard deviations of 4.2% and 7.5% in the evaluation of the repeatability and reproducibility, respectively. The MIP/MWCNT/GCE sensor is simple to fabricate and easy to use and was successfully applied to the determination of OTA in spiked beer and wine samples, with recoveries between 84 and 104%, without the need of a sample pre-treatment step.
Resumo:
For the first time, a glassy carbon electrode (GCE) modified with novel N-doped carbon nanotubes (CNT-N) functionalized with MnFe2O4 nanoparticles (MnFe2O4@CNT-N) has been prepared and applied for the electrochemical determination of caffeine (CF), acetaminophen (AC) and ascorbic acid (AA). The electrochemical behaviour of CF, AC and AA on the bare GCE, CNT-N/GCE and MnFe2O4@CNT-N/GCE were carefully investigated using cyclic voltammetry (CV) and square-wave voltammetry (SWV). Compared to bare GCE and CNT-N modified electrode, the MnFe2O4@CNT-N modified electrode can remarkably improve the electrocatalytic activity towards the oxidation of CF, AC and AA with an increase in the anodic peak currents of 52%, 50% and 55%, respectively. Also, the SWV anodic peaks of these molecules could be distinguished from each other at the MnFe2O4@CNT-N modified electrode with enhanced oxidation currents. The linear response ranges for the square wave voltammetric determination of CF, AC and AA were 1.0 × 10−6 to 1.1 × 10−3 mol dm−3, 1.0 × 10−6 to 1.0 × 10−3 mol dm−3 and 2.0 × 10−6 to 1.0 × 10−4 mol dm−3 with detection limit (S/N = 3) of 0.83 × 10−6, 0.83 × 10−6 and 1.8 × 10−6 mol dm−3, respectively. The sensitivity values at the MnFe2O4@CNT-N/GCE for the individual determination of AC, AA and CF and in the presence of the other molecules showed that the quantification of AA and CF show no interferences from the other molecules; however, AA and CF interfered in the determination of AC, with the latter molecule showing the strongest interference. Nevertheless, the obtained results show that MnFe2O4@CNT-N composite material acted as an efficient electrochemical sensor towards the selected biomolecules.
Resumo:
In this work, a norfloxacin selective modified glassy carbon electrode (GCE) based on a molecularly imprinted polymer (MIP) as electrochemical sensor was developed. A suspension of multi-walled carbon nanotubes (MWCNTs) was deposited on the electrode surface. Subsequently, a molecularly imprinted film was prepared by electropolymerization, via cyclic voltammetry of pyrrole (PPy) in the presence of norfloxacin (NFX) as the template molecule. A control electrode (NIP) was also prepared. Scanning electron microscopy (SEM) and cyclic voltammetry in a ferrocyanide solution were performed for morphological and electrochemical characterisation, respectively. Several experimental parameters were studied and optimised. For quantification purposes the MIP/MWCNT/GCE was immersed in NFX solutions for 10 min, and the detection was performed in voltammetric cell by square wave voltammetry. The proposed sensor presented a linear behaviour, between peak current intensity and logarithmic concentration of NFX between 1 × 10−7 and 8 × 10−6 M. The obtained results presented good precision, with a repeatability of 4.3% and reproducibility of 9% and the detection limit was 4.6 × 10−8 M (S/N = 3). The developed sensor displayed good selectivity and operational lifetime, is simple to fabricate and easy to operate and was successfully applied to the analysis of NFX in urine samples.