2 resultados para avenaciolide analogues

em Instituto Politécnico do Porto, Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidation of codeine on glassy carbon electrodes has been studied in detail using differential pulse voltammetry. The results obtained using a glassy carbon electrode clearly show a much more complex oxidation mechanism than that previously reported when platinum and gold electrodes were used. To clarify the codeine oxidative profile, several metabolites and analogues of this alkaloid, codeine N-oxide, norcodeine, dihydrocodeine, acetylcodeine and 6- chlorodesoxycodeine, were synthesized and studied. It was deduced that the anodic waves observed in codeine oxidation are related to the presence of methoxy, hydroxy and tertiary amine groups. Due to the similarity of potentials at which these oxidative processes take place, at some pHs an overlap of peaks occurs and only one anodic wave is observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tamoxifen is a selective estrogen receptor modulator that is used as an adjuvant and/or chemotherapeutic agent for the treatment of all stages of hormone-dependent breast cancer. Currently there is a deep interest in the study of tamoxifen biotransformation and identification of metabolites since they can significantly contribute to the overall pharmacological or adverse effects of the drug. Accordingly, the study of the electrochemical behavior of tamoxifen in aqueous solution is reported. To clarify the occurring oxidative process and to assess the influence of the functional groups on the oxidation mechanism, the voltammetric assessment was extended to the study of tamoxifen’s analogues (E)-tamoxifen and dihydrotamoxifen, and to its main phase I oxidative metabolite, N-desmethyl tamoxifen. The data found shows that the oxidative processes occurring in tamoxifen are essentially related with the two chemical moieties present in the molecule: the substituted aromatic nucleus and the tertiary amine group. Moreover, the results obtained suggest that the ethylenic linkage is not critical for tamoxifen’s oxidation although it could play an important role in the course of the oxidation process. These results could contribute to highlight some remaining questions regarding tamoxifen’s metabolic behavior and to the development of new analytical strategies, based on electrochemical approaches.