40 resultados para automatic test case generation
em Instituto Politécnico do Porto, Portugal
Resumo:
Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.
Resumo:
This paper presents a Unit Commitment model with reactive power compensation that has been solved by Genetic Algorithm (GA) optimization techniques. The GA has been developed a computational tools programmed/coded in MATLAB. The main objective is to find the best generations scheduling whose active power losses are minimal and the reactive power to be compensated, subjected to the power system technical constraints. Those are: full AC power flow equations, active and reactive power generation constraints. All constraints that have been represented in the objective function are weighted with a penalty factors. The IEEE 14-bus system has been used as test case to demonstrate the effectiveness of the proposed algorithm. Results and conclusions are dully drawn.
Resumo:
Congestion management of transmission power systems has achieve high relevance in competitive environments, which require an adequate approach both in technical and economic terms. This paper proposes a new methodology for congestion management and transmission tariff determination in deregulated electricity markets. The congestion management methodology is based on a reformulated optimal power flow, whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the transactions resulting from market operation. The proposed transmission tariffs consider the physical impact caused by each market agents in the transmission network. The final tariff considers existing system costs and also costs due to the initial congestion situation and losses. This paper includes a case study for the 118 bus IEEE test case.
Resumo:
Power systems operation in a liberalized environment requires that market players have access to adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper deals with ancillary services negotiation in electricity markets. The proposed concepts and methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of ancillary services using two different methods (Linear Programming and Genetic Algorithm approaches) is included in the paper.
Resumo:
This paper proposes two meta-heuristics (Genetic Algorithm and Evolutionary Particle Swarm Optimization) for solving a 15 bid-based case of Ancillary Services Dispatch in an Electricity Market. A Linear Programming approach is also included for comparison purposes. A test case based on the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is used to demonstrate that the use of meta-heuristics is suitable for solving this kind of optimization problem. Faster execution times and lower computational resources requirements are the most relevant advantages of the used meta-heuristics when compared with the Linear Programming approach.
Resumo:
An auction model is used to increase the individual profits for market players with products they do not use. A Financial Transmission Rights Auction has the goal of trade transmission rights between Bidders and helps them raise their own profits. The ISO plays a major rule on keep the system in technical limits without interfere on the auctions offers. In some auction models the ISO decide want bids are implemented on the network, always with the objective maximize the individual profits for all bidders in the auction. This paper proposes a methodology for a Financial Transmission Rights Auction and an informatics application. The application receives offers from the purchase and sale side and considers bilateral contracts as Base Case. This goal is maximize the individual profits within the system in their technical limits. The paper includes a case study for the 30 bus IEEE test case.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tool must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case based on California Independent System Operator (CAISO) data concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
The end consumers in a smart grid context are seen as active players. The distributed generation resources applied in smart home system as a micro and small-scale systems can be wind generation, photovoltaic and combine heat and power facility. The paper addresses the management of domestic consumer resources, i.e. wind generation, solar photovoltaic, combined heat and power, electric vehicle with gridable capability and loads, in a SCADA system with intelligent methodology to support the user decision in real time. The main goal is to obtain the better management of excess wind generation that may arise in consumer’s distributed generation resources. The optimization methodology is performed in a SCADA House Intelligent Management context and the results are analyzed to validate the SCADA system.
Resumo:
Using a longitudinal database (1996-2003) at the plant level, this article aims to shed light on the proposition that most productive domestic firms self-select to export markets. Self-selection and learning by exporting are two non-mutually-exclusive theses that attempt to explain the high correlation between firms’ international trade involvement and their superior performance relative to domestic firms. In general, we find evidence of a self-selection to exports. However, there is significant heterogeneity of sales destinations, firm import status before exporting,and the specificities of the sectors firms belong to.
Resumo:
The demonstration proposal moves from the capabilities of a wireless biometric badge [4], which integrates a localization and tracking service along with an automatic personal identification mechanism, to show how a full system architecture is devised to enable the control of physical accesses to restricted areas. The system leverages on the availability of a novel IEEE 802.15.4/Zigbee Cluster Tree network model, on enhanced security levels and on the respect of all the users' privacy issues.
Resumo:
In these days the learning experience is no longer confined within the four walls of a classroom. Computers and primarily the internet have broadened this horizon by creating a way of delivering education that is known as e-learning. In the meantime, the internet, or more precisely, the Web is heading towards a new paradigm where the user is no longer just a consumer of information and becomes an active part in the communication. This two-way channel where the user takes the role of the producer of content triggered the appearance of new types of services such as Social Networks, Blogs and Wikis. To seize this second generation of communities and services, educational vendors are willing to develop e-learning systems focused on the new and emergent users needs. This paper describes the analysis and specification of an e-learning environment at our School (ESEIG) towards this new Web generation, called PEACE – Project for ESEIG Academic Environment. This new model relies on the integration of several services controlled by teachers and students such as social networks, repositories libraries, e-portfolios and e-conference sytems, intelligent tutors, recommendation systems, automatic evaluators, virtual classrooms and 3D avatars.
Resumo:
Most of distributed generation and smart grid research works are dedicated to network operation parameters studies, reliability, etc. However, many of these works normally uses traditional test systems, for instance, IEEE test systems. This paper proposes voltage magnitude and reliability studies in presence of fault conditions, considering realistic conditions found in countries like Brazil. The methodology considers a hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models and a remedial action algorithm which is based on optimal power flow. To illustrate the application of the proposed method, the paper includes a case study that considers a real 12-bus sub-transmission network.
Resumo:
In this paper we present VERITAS, a tool that focus time maintenance, that is one of the most important processes in the engineering of the time during the development of KBS. The verification and validation (V&V) process is part of a wider process denominated knowledge maintenance, in which an enterprise systematically gathers, organizes, shares, and analyzes knowledge to accomplish its goals and mission. The V&V process states if the software requirements specifications have been correctly and completely fulfilled. The methodologies proposed in software engineering have showed to be inadequate for Knowledge Based Systems (KBS) validation and verification, since KBS present some particular characteristics. VERITAS is an automatic tool developed for KBS verification which is able to detect a large number of knowledge anomalies. It addresses many relevant aspects considered in real applications, like the usage of rule triggering selection mechanisms and temporal reasoning.