4 resultados para automated full waveform logging system
em Instituto Politécnico do Porto, Portugal
Resumo:
This article presents a novel method for visualizing the control systems behavior. The proposed scheme uses the tools of fractional calculus and computes the signals propagating within the system structure as a time/frequency-space wave. Linear and nonlinear closed-loop control systems are analyzed, for both the time and frequency responses, under the action of a reference step input signal. Several nonlinearities, namely, Coulomb friction and backlash, are also tested. The numerical experiments demonstrate the feasibility of the proposed methodology as a visualization tool and motivate its extension for other systems and classes of nonlinearities.
Resumo:
Sulfadiazine is an antibiotic of the sulfonamide group and is used as a veterinary drug in fish farming. Monitoring it in the tanks is fundamental to control the applied doses and avoid environmental dissemination. Pursuing this goal, we included a novel potentiometric design in a flow-injection assembly. The electrode body was a stainless steel needle veterinary syringe of 0.8-mm inner diameter. A selective membrane of PVC acted as a sensory surface. Its composition, the length of the electrode, and other flow variables were optimized. The best performance was obtained for sensors of 1.5-cm length and a membrane composition of 33% PVC, 66% onitrophenyloctyl ether, 1% ion exchanger, and a small amount of a cationic additive. It exhibited Nernstian slopes of 61.0 mV decade-1 down to 1.0×10-5 mol L-1, with a limit of detection of 3.1×10-6 mol L-1 in flowing media. All necessary pH/ionic strength adjustments were performed online by merging the sample plug with a buffer carrier of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, pH 4.9. The sensor exhibited the advantages of a fast response time (less than 15 s), long operational lifetime (60 days), and good selectivity for chloride, nitrite, acetate, tartrate, citrate, and ascorbate. The flow setup was successfully applied to the analysis of aquaculture waters. The analytical results were validated against those obtained with liquid chromatography–tandem mass spectrometry procedures. The sampling rate was about 84 samples per hour and recoveries ranged from 95.9 to 106.9%.
Resumo:
In competitive electricity markets with deep concerns for the efficiency level, demand response programs gain considerable significance. As demand response levels have decreased after the introduction of competition in the power industry, new approaches are required to take full advantage of demand response opportunities. Grid operators and utilities are taking new initiatives, recognizing the value of demand response for grid reliability and for the enhancement of organized spot markets’ efficiency. This paper proposes a methodology for the selection of the consumers that participate in an event, which is the responsibility of the Portuguese transmission network operator. The proposed method is intended to be applied in the interruptibility service implemented in Portugal, in convergence with Spain, in the context of the Iberian electricity market. This method is based on the calculation of locational marginal prices (LMP) which are used to support the decision concerning the consumers to be schedule for participation. The proposed method has been computationally implemented and its application is illustrated in this paper using a 937 bus distribution network with more than 20,000 consumers.
Resumo:
The paper presents a RFDSCA automated synthesis procedure. This algorithm determines several RFDSCA circuits from the top-level system specifications all with the same maximum performance. The genetic synthesis tool optimizes a fitness function proportional to the RFDSCA quality factor and uses the epsiv-concept and maximin sorting scheme to achieve a set of solutions well distributed along a non-dominated front. To confirm the results of the algorithm, three RFDSCAs were simulated in SpectreRF and one of them was implemented and tested. The design used a 0.25 mum BiCMOS process. All the results (synthesized, simulated and measured) are very close, which indicate that the genetic synthesis method is a very useful tool to design optimum performance RFDSCAs.