3 resultados para air cargo operations
em Instituto Politécnico do Porto, Portugal
Resumo:
One important step in the design of air stripping operations for the removal of VOC is the choice of operating conditions, which are based in the phase ratio. This parameter sets on directly the stripping factor and the efficiency of the operation. Its value has an upper limit determined by the flooding regime, which is previewed using empirical correlations, namely the one developed by Eckert. This type of approach is not suitable for the development of algorithms. Using a pilot scale column and a convenient solution, the pressure drop was determined in different operating conditions and the experimental values were compared with the estimations. This particular research will be incorporated in a global model for simulating the dynamics of air stripping using a multi variable distributed parameter system.
Resumo:
The aim of this work was to simulate the radionuclides dispersion in the surrounding area of a coal-fired power plant, operational during the last 25 years. The dispersion of natural radionuclides (236Ra, 232Th and 40K) was simulated by a Gaussian plume dispersion model with three different stability classes estimating the radionuclides concentration at ground level. Measurements of the environmen-tal activity concentrations were carried out by γ-spectrometry and compared with results from the air dispersion and deposition model which showed that the stabil-ity class D causes the dispersion to longer distances up to 20 km from the stacks.
Resumo:
The design and development of the swordfish autonomous surface vehicle (ASV) system is discussed. Swordfish is an ocean capable 4.5 m long catamaran designed for network centric operations (with ocean and air going vehicles and human operators). In the basic configuration, Swordfish is both a survey vehicle and a communications node with gateways for broadband, Wi-Fi and GSM transports and underwater acoustic modems. In another configuration, Swordfish mounts a docking station for the autonomous underwater vehicle Isurus from Porto University. Swordfish has an advanced control architecture for multi-vehicle operations with mixed initiative interactions (human operators are allowed to interact with the control loops).