46 resultados para aggregate volatility
em Instituto Politécnico do Porto, Portugal
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.
Resumo:
We focus on large-scale and dense deeply embedded systems where, due to the large amount of information generated by all nodes, even simple aggregate computations such as the minimum value (MIN) of the sensor readings become notoriously expensive to obtain. Recent research has exploited a dominance-based medium access control(MAC) protocol, the CAN bus, for computing aggregated quantities in wired systems. For example, MIN can be computed efficiently and an interpolation function which approximates sensor data in an area can be obtained efficiently as well. Dominance-based MAC protocols have recently been proposed for wireless channels and these protocols can be expected to be used for achieving highly scalable aggregate computations in wireless systems. But no experimental demonstration is currently available in the research literature. In this paper, we demonstrate that highly scalable aggregate computations in wireless networks are possible. We do so by (i) building a new wireless hardware platform with appropriate characteristics for making dominance-based MAC protocols efficient, (ii) implementing dominance-based MAC protocols on this platform, (iii) implementing distributed algorithms for aggregate computations (MIN, MAX, Interpolation) using the new implementation of the dominance-based MAC protocol and (iv) performing experiments to prove that such highly scalable aggregate computations in wireless networks are possible.
Resumo:
In this paper, we focus on large-scale and dense Cyber- Physical Systems, and discuss methods that tightly integrate communication and computing with the underlying physical environment. We present Physical Dynamic Priority Dominance ((PD)2) protocol that exemplifies a key mechanism to devise low time-complexity communication protocols for large-scale networked sensor systems. We show that using this mechanism, one can compute aggregate quantities such as the maximum or minimum of sensor readings in a time-complexity that is equivalent to essentially one message exchange. We also illustrate the use of this mechanism in a more complex task of computing the interpolation of smooth as well as non-smooth sensor data in very low timecomplexity.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.
Resumo:
With accelerated market volatility, faster response times and increased globalization, business environments are going through a major transformation and firms have intensified their search for strategies which can give them competitive advantage. This requires that companies continuously innovate, to think of new ideas that can be transformed or implemented as products, processes or services, generating value for the firm. Innovative solutions and processes are usually developed by a group of people, working together. A grouping of people that share and create new knowledge can be considered as a Community of Practice (CoP). CoP’s are places which provide a sound basis for organizational learning and encourage knowledge creation and acquisition. Virtual Communities of Practice (VCoP's) can perform a central role in promoting communication and collaboration between members who are dispersed in both time and space. Nevertheless, it is known that not all CoP's and VCoP's share the same levels of performance or produce the same results. This means that there are factors that enable or constrain the process of knowledge creation. With this in mind, we developed a case study in order to identify both the motivations and the constraints that members of an organization experience when taking part in the knowledge creating processes of VCoP's. Results show that organizational culture and professional and personal development play an important role in these processes. No interviewee referred to direct financial rewards as a motivation factor for participation in VCoPs. Most identified the difficulty in aligning objectives established by the management with justification for the time spent in the VCoP. The interviewees also said that technology is not a constraint.
Resumo:
Power systems have been suffering huge changes mainly due to the substantial increase of distributed generation and to the operation in competitive environments. Virtual power players can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. Resource management gains an increasing relevance in this competitive context, while demand side active role provides managers with increased demand elasticity. This makes demand response use more interesting and flexible, giving rise to a wide range of new opportunities.This paper proposes a methodology for managing demand response programs in the scope of virtual power players. The proposed method is based on the calculation of locational marginal prices (LMP). The evaluation of the impact of using demand response specific programs on the LMP value supports the manager decision concerning demand response use. The proposed method has been computationally implemented and its application is illustrated in this paper using a 32 bus network with intensive use of distributed generation.
Resumo:
Short-term risk management is highly dependent on long-term contractual decisions previously established; risk aversion factor of the agent and short-term price forecast accuracy. Trying to give answers to that problem, this paper provides a different approach for short-term risk management on electricity markets. Based on long-term contractual decisions and making use of a price range forecast method developed by the authors, the short-term risk management tool presented here has as main concern to find the optimal spot market strategies that a producer should have for a specific day in function of his risk aversion factor, with the objective to maximize the profits and simultaneously to practice the hedge against price market volatility. Due to the complexity of the optimization problem, the authors make use of Particle Swarm Optimization (PSO) to find the optimal solution. Results from realistic data, namely from OMEL electricity market, are presented and discussed in detail.
Resumo:
Recent changes in power systems mainly due to the substantial increase of distributed generation and to the operation in competitive environments has created new challenges to operation and planning. In this context, Virtual Power Players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. Demand response market implementation has been done in recent years. Several implementation models have been considered. An important characteristic of a demand response program is the trigger criterion. A program for which the event trigger depends on the Locational Marginal Price (LMP) used by the New England Independent System operator (ISO-NE) inspired the present paper. This paper proposes a methodology to support VPP demand response programs management. The proposed method has been computationally implemented and its application is illustrated using a 32 bus network with intensive use of distributed generation. Results concerning the evaluation of the impact of using demand response events are also presented.
Resumo:
The increase of distributed generation (DG) has brought about new challenges in electrical networks electricity markets and in DG units operation and management. Several approaches are being developed to manage the emerging potential of DG, such as Virtual Power Players (VPPs), which aggregate DG plants; and Smart Grids, an approach that views generation and associated loads as a subsystem. This paper presents a multi-level negotiation mechanism for Smart Grids optimal operation and negotiation in the electricity markets, considering the advantages of VPPs’ management. The proposed methodology is implemented and tested in MASCEM – a multiagent electricity market simulator, developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations.
Resumo:
Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.
Resumo:
This paper addresses the optimal involvement in derivatives electricity markets of a power producer to hedge against the pool price volatility. To achieve this aim, a swarm intelligence meta-heuristic optimization technique for long-term risk management tool is proposed. This tool investigates the long-term opportunities for risk hedging available for electric power producers through the use of contracts with physical (spot and forward contracts) and financial (options contracts) settlement. The producer risk preference is formulated as a utility function (U) expressing the trade-off between the expectation and the variance of the return. Variance of return and the expectation are based on a forecasted scenario interval determined by a long-term price range forecasting model. This model also makes use of particle swarm optimization (PSO) to find the best parameters allow to achieve better forecasting results. On the other hand, the price estimation depends on load forecasting. This work also presents a regressive long-term load forecast model that make use of PSO to find the best parameters as well as in price estimation. The PSO technique performance has been evaluated by comparison with a Genetic Algorithm (GA) based approach. A case study is presented and the results are discussed taking into account the real price and load historical data from mainland Spanish electricity market demonstrating the effectiveness of the methodology handling this type of problems. Finally, conclusions are dully drawn.
Resumo:
We examine satisfaction with HRM practices, namely recruitment, training and rewarding in NPO’s and attitudes regarding the appropriateness of these practices. The participants in this study are 76 volunteers, affiliated to 4 different NPO’s, which work in hospitals and have direct contact with patients and their families. Analysing aggregate results we show that volunteers are more satisfied with training, and consider that the training strategies are very appropriate. After identifying differences between organisations we discover that in some organizations volunteers are satisfied with rewards, but in opposition they have negative attitudes regarding the appropriateness of the recognition strategies and vice-versa an opposite relation between satisfaction with reward and recognition strategies and the process of reward and recognition. We also name the more and less satisfied volunteers.
Resumo:
We examine volunteer satisfaction with HRM practices, namely recruitment, training and reward in NPOs and attitudes regarding the appropriateness of these practices. The participants in this study are 76 volunteers affiliated with four different NPOs, who work in hospitals and have direct contact with patients and their families. Analysing aggregate results we show that volunteers are more satisfied with training, and consider the training strategies to be very appropriate. After identifying differences between organisations we discover that in some organisations volunteers are satisfied with rewards but they have negative attitudes regarding the appropriateness of the recognition strategies. We also identify the volunteers who are the most and the least satisfied.
Resumo:
Dissertação de Mestrado em Finanças Empresariais
Resumo:
Mestrado em Engenharia Geotécnica e Geoambiente