5 resultados para aerial inspection
em Instituto Politécnico do Porto, Portugal
Resumo:
It is well-known that ROVs require human intervention to guarantee the success of their assignment, as well as the equipment safety. However, as its teleoperation is quite complex to perform, there is a need for assisted teleoperation. This study aims to take on this challenge by developing vision-based assisted teleoperation maneuvers, since a standard camera is present in any ROV. The proposed approach is a visual servoing solution, that allows the user to select between several standard image processing methods and is applied to a 3-DOF ROV. The most interesting characteristic of the presented system is the exclusive use of the camera data to improve the teleoperation of an underactuated ROV. It is demonstrated through the comparison and evaluation of standard implementations of different vision methods and the execution of simple maneuvers to acquire experimental results, that the teleoperation of a small ROV can be drastically improved without the need to install additional sensors.
Resumo:
In this work we propose the development of a stereo SLS system for underwater inspection operations. We demonstrate how to perform a SLS calibration both in dry and underwater environments using two different methods. The proposed methodology is able to achieve quite accurate results, lower than 1 mm in dry environments. We also display a 3D underwater scan of a known object size, a sea scallop, where the system is able to perform a scan with a global error lower than 2% of the object size.
Resumo:
A instabilização de taludes rochosos, com consequências mais ou menos gravosas, repete-se com frequência no território nacional. Os enquadramentos destes incidentes são diversos, sendo mais comum e mais visível a sua ocorrência em taludes adjacentes a vias de comunicação. No entanto, o fenómeno repete-se também em vertentes naturais, geralmente em alturas de pluviosidade mais prolongada e intensa. No presente trabalho reveem-se conceitos associados a maciços rochosos, nomeadamente as principais classificações geotécnicas e as diferentes tipologias de instabilidade em taludes rochosos. Desenvolve-se um caso de estudo de uma vertente localizada em S. Simão, concelho de Amarante. Percorrem-se as sucessivas fases de estudo, incluindo a realização da fotografia aérea com recurso a um veículo não tripulado, a geração de um modelo 3D de elevada precisão da vertente e a caracterização e a classificação dos diferentes afloramentos rochosos. Desenvolve-se uma metodologia de inspeção com a criação de dois conjuntos de fichas e propõe-se o agravamento da classificação das anomalias perante a simultaneidade de ocorrência de anomalias de idêntica gravidade e a hierarquização dos blocos potencialmente instáveis, de acordo com os respetivos níveis de gravidade (NGB). Recorre-se ao programa de modelação da queda de blocos, “Rocfall (4.0”, da “Rocscience”, a partir de trajetórias definidas no modelo 3D gerado e propõem-se soluções de reforço e de proteção da vertente.
Resumo:
The project was made during the Erasmus+ Program in Instituto Superior de Engenharia do Porto, Portugal. I had a pleasure to do this in Gislotica Mechanical Solution, Lda. This document presents a process of design a vertical inspection station for truck tires. The first part contains an introduction. There are information about Gislotica Company and also first analysis of problem. In next part is presented way to figured out the task and described all issues connected with designed machine. In last part were made some conclusions about problems and results. There is a place not only for sum up design process but also my develop during the project. I repeatedly pointed out which issues were new for me. A lot of times I focus on myself and gained experience and information about design process.
Resumo:
The aim of the project was to design in Solidworks and improve an existing Tire inspection machine. The project was developed in Gislotica - Mechanical Solutions, guided by ing. Rui Manuel Fazenda Silva who is a professor in ISEP. The designed device relates to the inspection of automobile tires for holes and weak places caused by punctures and usage. Such inspection includes careful examination of the inside surface of the tire which is difficult because of its cylindrical shape, stiff and resistant nature of the material out of which the tire is made. The whole idea is to provide a machine by which the walls of the tire may be spread and hold apart, presenting the inner surface for the worker to control. The device must also perform rotational and vertical movement of the tire. It is meant to provide inspection in hich there is no need for the controller to use force. It makes his work easier and more efficient.