5 resultados para adsorption envelope

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies were undertaken to determine the adsorption behavior of α-cypermethrin [R)-α-cyano-3-phenoxybenzyl(1S)-cis- 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, and (S)-α-cyano-3-phenoxybenzyl (1R)-cis-3-(2,2-dichlorovinyl)-2,2- dimethylcyclopropanecarboxylate] in solutions on granules of cork and activated carbon (GAC). The adsorption studies were carried out using a batch equilibrium technique. A gas chromatograph with an electron capture detector (GC-ECD) was used to analyze α-cypermethrin after solid phase extraction with C18 disks. Physical properties including real density, pore volume, surface area and pore diameter of cork were evaluated by mercury porosimetry. Characterization of cork particles showed variations thereby indicating the highly heterogeneous structure of the material. The average surface area of cork particles was lower than that of GAC. Kinetics adsorption studies allowed the determination of the equilibrium time—24 hours for both cork (1–2 mm and 3–4 mm) and GAC. For the studied α-cypermethrin concentration range, GAC revealed to be a better sorbent. However, adsorption parameters for equilibrium concentrations, obtained through the Langmuir and Freundlich models, showed that granulated cork 1–2 mm have the maximum amount of adsorbed α-cypermethrin (qm) (303 μg/g); followed by GAC (186 μg/g) and cork 3-4 mm (136 μg/g). The standard deviation (SD) values, demonstrate that Freundlich model better describes the α-cypermethrin adsorption phenomena on GAC, while α-cypermethrin adsorption on cork (1-2 mm and 3-4 mm) is better described by the Langmuir. In view of the adsorption results obtained in this study it appears that granulated cork may be a better and a cheaper alternative to GAC for removing α-cypermethrin from water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristic topographical features (crystallite dimensions, surface morphology and roughness) of bioceramics may influence the adsorption of proteins relevant to bone regeneration. This work aims at analyzing the influence of two distinct nanophased hydroxyapatite (HA) ceramics, HA725 and HA1000 on fibronectin (FN) and osteonectin (ON) adsorption and MC3T3-E1 osteoblast adhesion and morphology. Both substrates were obtained using the same hydroxyapatite nanocrystals aggregates and applying the sintering temperatures of 725ºC and 1000ºC, respectively. The two proteins used in this work, FN as an adhesive glycoprotein and ON as a counter-adhesive protein, are known to be involved in the early stages of osteogenesis (cell adhesion, mobility and proliferation). The properties of the nanoHA substrates had an important role in the adsorption behavior of the two studied proteins and clearly affected the MC3T3- E1 morphology, distribution and metabolic activity. HA1000 surfaces presenting slightly larger grain size, higher root-mean-square roughness (Rq), lower surface area and porosity, allowed for higher amounts of both proteins adsorbed. These substrates also revealed increased number of exposed FN cell-binding domains as well as higher affinity for osteonectin. Regarding the osteoblast adhesion results, improved viability and cell number were found for HA1000 surfaces as compared to HA725 ones, independently of the presence or type of adsorbed protein. Therefore the osteoblast adhesion and metabolic activity seemed to be more sensitive to surfaces morphology and roughness than to the type of adsorbed proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gallinaceous feathers are an abundant solid waste from the poultry processing industries, which poses disposal problems. A kinetic study dealing with the adsorption process of wool reactive dye, Yellow Lanasol 4G (CI Reactive Yellow 39), on gallinaceous (Gallus gallus, Cobb 500) feathers was carried out. The main research goals of this work were to evaluate the viability of using this waste as adsorbent and to study the kinetics of the adsorption process, using a synthetic effluent. The characterization of feathers was performed by scanning electron microscopy, mercury porosimetry and B.E.T. method. The study of several factors (stirring, particles size, initial dye concentration and temperature) showed their influence over the adsorption process. An adapted version of the Schumckler and Goldstein´s unreacted core model fitted the experimental data. The best fit was obtained when the rate-limiting step was the diffusion through the reacted layer, which was expected considering the size of the dyestuff molecules. The comparison with the granular activated carbon (GAC) Sutcliffe GAC 10-30 indicate that in spite of the high adsorption capacities shown by feathers the GAC presented higher values, the values obtained were respectively 150 and 219 mg g-1, for an initial concentration of 500 mg L-1. The results obtained might open future perspectives both to the valorization of feathers and to the economical treatment of textile wastewaters.