5 resultados para Zero-inflated models, Statistical models, Poisson, Negative binomial, Statistical methods
em Instituto Politécnico do Porto, Portugal
Resumo:
Introduction: Healthcare improvements have allowed prevention but have also increased life expectancy, resulting in more people being at risk. Our aim was to analyse the separate effects of age, period and cohort on incidence rates by sex in Portugal, 2000–2008. Methods: From the National Hospital Discharge Register, we selected admissions (aged ≥49 years) with hip fractures (ICD9-CM, codes 820.x) caused by low/moderate trauma (falls from standing height or less), readmissions and bone cancer cases. We calculated person-years at risk using population data from Statistics Portugal. To identify period and cohort effects for all ages, we used an age–period–cohort model (1-year intervals) followed by generalised additive models with a negative binomial distribution of the observed incidence rates of hip fractures. Results: There were 77,083 hospital admissions (77.4 % women). Incidence rates increased exponentially with age for both sexes (age effect). Incidence rates fell after 2004 for women and were random for men (period effect). There was a general cohort effect similar in both sexes; risk of hip fracture altered from an increasing trend for those born before 1930 to a decreasing trend following that year. Risk alterations (not statistically significant) coincident with major political and economic change in the history of Portugal were observed around birth cohorts 1920 (stable–increasing), 1940 (decreasing–increasing) and 1950 (increasing–decreasing only among women). Conclusions: Hip fracture risk was higher for those born during major economically/politically unstable periods. Although bone quality reflects lifetime exposure, conditions at birth may determine future risk for hip fractures.
Resumo:
This study aimed to characterize air pollution and the associated carcinogenic risks of polycyclic aromatic hydrocarbon (PAHs) at an urban site, to identify possible emission sources of PAHs using several statistical methodologies, and to analyze the influence of other air pollutants and meteorological variables on PAH concentrations.The air quality and meteorological data were collected in Oporto, the second largest city of Portugal. Eighteen PAHs (the 16 PAHs considered by United States Environment Protection Agency (USEPA) as priority pollutants, dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were collected daily for 24 h in air (gas phase and in particles) during 40 consecutive days in November and December 2008 by constant low-flow samplers and using polytetrafluoroethylene (PTFE) membrane filters for particulate (PM10 and PM2.5 bound) PAHs and pre-cleaned polyurethane foam plugs for gaseous compounds. The other monitored air pollutants were SO2, PM10, NO2, CO, and O3; the meteorological variables were temperature, relative humidity, wind speed, total precipitation, and solar radiation. Benzo[a]pyrene reached a mean concentration of 2.02 ngm−3, surpassing the EU annual limit value. The target carcinogenic risks were equal than the health-based guideline level set by USEPA (10−6) at the studied site, with the cancer risks of eight PAHs reaching senior levels of 9.98×10−7 in PM10 and 1.06×10−6 in air. The applied statistical methods, correlation matrix, cluster analysis, and principal component analysis, were in agreement in the grouping of the PAHs. The groups were formed according to their chemical structure (number of rings), phase distribution, and emission sources. PAH diagnostic ratios were also calculated to evaluate the main emission sources. Diesel vehicular emissions were the major source of PAHs at the studied site. Besides that source, emissions from residential heating and oil refinery were identified to contribute to PAH levels at the respective area. Additionally, principal component regression indicated that SO2, NO2, PM10, CO, and solar radiation had positive correlation with PAHs concentrations, while O3, temperature, relative humidity, and wind speed were negatively correlated.
Resumo:
O constante crescimento dos produtores em regime especial aliado à descentralização dos pontos injetores na rede, tem permitido uma redução da importação de energia mas também tem acarretado maiores problemas para a gestão da rede. Estes problemas estão relacionados com o facto da produção estar dependente das condições climatéricas, como é o caso dos produtores eólicos, hídricos e solares. A previsão da energia produzida em função da previsão das condições climatéricas tem sido alvo de atenção por parte da comunidade empresarial do setor, pelo facto de existir modelos razoáveis para a previsão das condições climatéricas a curto prazo, e até a longo prazo. Este trabalho trata, em concreto, do problema da previsão de produção em centrais mini-hídricas, apresentando duas propostas para essa previsão. Em ambas as propostas efetua-se inicialmente a previsão do caudal que chega à central, sendo esta depois convertida em potência que é injetada na rede. Para a previsão do caudal utilizaram-se dois métodos estatísticos: o método Holt-Winters e os modelos ARMAX. Os dois modelos de previsão propostos consideram um horizonte temporal de uma semana, com discretização horária, para uma central no norte de Portugal, designadamente a central de Penide. O trabalho também contempla um pequeno estudo da bibliografia existente tanto para a previsão da produção como de afluências de centrais hidroelétricas. Aborda, ainda, conceitos relacionados com as mini-hídricas e apresenta uma caraterização do parque de centrais mini-hídricas em Portugal.
Resumo:
Este trabalho propõe-se a investigar as teorias e modelos organizacionais e a respetiva aplicabilidade nas organizações portuguesas. Após a revisão da literatura sobre modelos organizacionais, foi efetuada uma investigação quantitativa através de um questionário online com a finalidade de avaliar quais os modelos organizacionais predominantemente utilizados e quais as características organizacionais que levam à utilização de determinado modelo. Através de métodos estatísticos analisaram-se os resultados do inquérito com o objetivo de verificar a existência de possíveis relações entre diversas características das organizações e o modelo organizacional usado. Foi possível concluir que o modelo organizacional Burocrático é o modelo predominantemente utilizado pelos respondentes e que as organizações que adotam o modelo burocrático parecem conseguir implementar processos sistemáticos de inovação compatibilizando as regras e procedimentos com a capacidade para aprender e se adaptar. O setor de atividade e a dimensão das organizações são as variáveis que mais influenciam a adoção do modelo organizacional. A investigação contribui para o conhecimento teórico e pratico sobre modelos organizacionais e sobre a sua aplicação em diferentes tipos de organizações portuguesas e para a compreensão e capacitação dos engenheiros do tema da cultura organizacional, de modo a poderem trabalhar de forma efetiva em grupos multidisciplinares que criem valor para as respetivas organizações, inovando e aplicando a engenharia e tecnologia para lidar com as questões e desafios atuais referidos pelo relatório da UNESCO (1).
Resumo:
Beyond the classical statistical approaches (determination of basic statistics, regression analysis, ANOVA, etc.) a new set of applications of different statistical techniques has increasingly gained relevance in the analysis, processing and interpretation of data concerning the characteristics of forest soils. This is possible to be seen in some of the recent publications in the context of Multivariate Statistics. These new methods require additional care that is not always included or refered in some approaches. In the particular case of geostatistical data applications it is necessary, besides to geo-reference all the data acquisition, to collect the samples in regular grids and in sufficient quantity so that the variograms can reflect the spatial distribution of soil properties in a representative manner. In the case of the great majority of Multivariate Statistics techniques (Principal Component Analysis, Correspondence Analysis, Cluster Analysis, etc.) despite the fact they do not require in most cases the assumption of normal distribution, they however need a proper and rigorous strategy for its utilization. In this work, some reflections about these methodologies and, in particular, about the main constraints that often occur during the information collecting process and about the various linking possibilities of these different techniques will be presented. At the end, illustrations of some particular cases of the applications of these statistical methods will also be presented.