64 resultados para Wind power -- Equipment and supplies
em Instituto Politécnico do Porto, Portugal
Resumo:
The integration of wind power in eletricity generation brings new challenges to unit commitment due to the random nature of wind speed. For this particular optimisation problem, wind uncertainty has been handled in practice by means of conservative stochastic scenario-based optimisation models, or through additional operating reserve settings. However, generation companies may have different attitudes towards operating costs, load curtailment, or waste of wind energy, when considering the risk caused by wind power variability. Therefore, alternative and possibly more adequate approaches should be explored. This work is divided in two main parts. Firstly we survey the main formulations presented in the literature for the integration of wind power in the unit commitment problem (UCP) and present an alternative model for the wind-thermal unit commitment. We make use of the utility theory concepts to develop a multi-criteria stochastic model. The objectives considered are the minimisation of costs, load curtailment and waste of wind energy. Those are represented by individual utility functions and aggregated in a single additive utility function. This last function is adequately linearised leading to a mixed-integer linear program (MILP) model that can be tackled by general-purpose solvers in order to find the most preferred solution. In the second part we discuss the integration of pumped-storage hydro (PSH) units in the UCP with large wind penetration. Those units can provide extra flexibility by using wind energy to pump and store water in the form of potential energy that can be generated after during peak load periods. PSH units are added to the first model, yielding a MILP model with wind-hydro-thermal coordination. Results showed that the proposed methodology is able to reflect the risk profiles of decision makers for both models. By including PSH units, the results are significantly improved.
Resumo:
The introduction of wind power generation in several countries around the world, including in European countries, where energy policy directives have encouraged the use of renewables, led to several changes in market and power systems operation. The intensive integration of these sources has led to situations in which the demand is lower than the available renewable resources. In these situations a part of the available generation is wasted if not used for storage or to supply additional demand. This paper proposes a real time demand response methodology based on changing the electricity price for the consumers expecting an increase in the demand in the periods in which that demand is lower than the available renewable generation. The consumers response to the changes in electricity price is characterized by their price elasticity of demand considered distinct for each consumer type. The proposed methodology is applied to the Portuguese power system, in the context of the Iberian electricity market (MIBEL). The renewable-based producers are considered as special producers, with special tariffs, and so it is important to use the energy available as it will be paid anyway. In this context, consumers are entities actively participating in the operation of the market.
Using demand response to deal with unexpected low wind power generation in the context of smart grid
Resumo:
Demand response is assumed an essential resource to fully achieve the smart grids operating benefits, namely in the context of competitive markets. Some advantages of Demand Response (DR) programs and of smart grids can only be achieved through the implementation of Real Time Pricing (RTP). The integration of the expected increasing amounts of distributed energy resources, as well as new players, requires new approaches for the changing operation of power systems. The methodology proposed aims the minimization of the operation costs in a smart grid operated by a virtual power player. It is especially useful when actual and day ahead wind forecast differ significantly. When facing lower wind power generation than expected, RTP is used in order to minimize the impacts of such wind availability change. The proposed model application is here illustrated using the scenario of a special wind availability reduction day in the Portuguese power system (8th February 2012).
Resumo:
The increasing importance given by environmental policies to the dissemination and use of wind power has led to its fast and large integration in power systems. In most cases, this integration has been done in an intensive way, causing several impacts and challenges in current and future power systems operation and planning. One of these challenges is dealing with the system conditions in which the available wind power is higher than the system demand. This is one of the possible applications of demand response, which is a very promising resource in the context of competitive environments that integrates even more amounts of distributed energy resources, as well as new players. The methodology proposed aims the maximization of the social welfare in a smart grid operated by a virtual power player that manages the available energy resources. When facing excessive wind power generation availability, real time pricing is applied in order to induce the increase of consumption so that wind curtailment is minimized. The proposed method is especially useful when actual and day-ahead wind forecast differ significantly. The proposed method has been computationally implemented in GAMS optimization tool and its application is illustrated in this paper using a real 937-bus distribution network with 20310 consumers and 548 distributed generators, some of them with must take contracts.
Resumo:
In a world increasingly conscientious about environmental effects, power and energy systems are undergoing huge transformations. Electric energy produced from power plants is transmitted and distributed to end users through a power grid. The power industry performs the engineering design, installation, operation, and maintenance tasks to provide a high-quality, secure energy supply while accounting for its systems’ abilities to withstand uncertain events, such as weather-related outages. Competitive, deregulated electricity markets and new renewable energy sources, however, have further complicated this already complex infrastructure.Sustainable development has also been a challenge for power systems. Recently, there has been a signifi cant increase in the installation of distributed generations, mainly based on renewable resources such as wind and solar. Integrating these new generation systems leads to more complexity. Indeed, the number of generation sources greatly increases as the grid embraces numerous smaller and distributed resources. In addition, the inherent uncertainties of wind and solar energy lead to technical challenges such as forecasting, scheduling, operation, control, and risk management. In this special issue introductory article, we analyze the key areas in this field that can benefi t most from AI and intelligent systems now and in the future.We also identify new opportunities for cross-fertilization between power systems and energy markets and intelligent systems researchers.
Resumo:
Demand response is assumed as an essential resource to fully achieve the smart grids operating benefits, namely in the context of competitive markets and of the increasing use of renewable-based energy sources. Some advantages of Demand Response (DR) programs and of smart grids can only be achieved through the implementation of Real Time Pricing (RTP). The integration of the expected increasing amounts of distributed energy resources, as well as new players, requires new approaches for the changing operation of power systems. The methodology proposed in this paper aims the minimization of the operation costs in a distribution network operated by a virtual power player that manages the available energy resources focusing on hour ahead re-scheduling. When facing lower wind power generation than expected from day ahead forecast, demand response is used in order to minimize the impacts of such wind availability change. In this way, consumers actively participate in regulation up and spinning reserve ancillary services through demand response programs. Real time pricing is also applied. The proposed model is especially useful when actual and day ahead wind forecast differ significantly. Its application is illustrated in this paper implementing the characteristics of a real resources conditions scenario in a 33 bus distribution network with 32 consumers and 66 distributed generators.
Resumo:
The integration of growing amounts of distributed generation in power systems, namely at distribution networks level, has been fostered by energy policies in several countries around the world, including in Europe. This intensive integration of distributed, non-dispatchable, and natural sources based generation (including wind power) has caused several changes in the operation and planning of power systems and of electricity markets. Sometimes the available non-dispatchable generation is higher than the demand. This generation must be used; otherwise it is wasted if not stored or used to supply additional demand. New policies and market rules, as well as new players, are needed in order to competitively integrate all the resources. The methodology proposed in this paper aims at the maximization of the social welfare in a distribution network operated by a virtual power player that aggregates and manages the available energy resources. When facing a situation of excessive non-dispatchable generation, including wind power, real time pricing is applied in order to induce the increase of consumption so that wind curtailment is minimized. This method is especially useful when actual and day-ahead resources forecast differ significantly. The distribution network characteristics and concerns are addressed by including the network constraints in the optimization model. The proposed methodology has been implemented in GAMS optimization tool and its application is illustrated in this paper using a real 937-bus distribution network with 20.310 consumers and 548 distributed generators, some of them non-dispatchable and with must take contracts. The implemented scenario corresponds to a real day in Portuguese power system.
Resumo:
The intensive use of distributed generation based on renewable resources increases the complexity of power systems management, particularly the short-term scheduling. Demand response, storage units and electric and plug-in hybrid vehicles also pose new challenges to the short-term scheduling. However, these distributed energy resources can contribute significantly to turn the shortterm scheduling more efficient and effective improving the power system reliability. This paper proposes a short-term scheduling methodology based on two distinct time horizons: hour-ahead scheduling, and real-time scheduling considering the point of view of one aggregator agent. In each scheduling process, it is necessary to update the generation and consumption operation, and the storage and electric vehicles status. Besides the new operation condition, more accurate forecast values of wind generation and consumption are available, for the resulting of short-term and very short-term methods. In this paper, the aggregator has the main goal of maximizing his profits while, fulfilling the established contracts with the aggregated and external players.
Resumo:
The use of renewables have been increased I several countries around the world, namely in Europe. The wind power is generally the larger renewable resource with very specific characteristics in what concerns its variability and the inherent impacts in the power systems and electricity markets operation. This paper focuses on the Portuguese context of renewables use, including wind power. The work here presented includes the use of a real time pricing methodology developed by the authors aiming the reduction of electricity consumption in the moments of unexpected low wind power. A more specific example of application of real time pricing is demonstrated for the minimization of the operation costs in a distribution network. When facing lower wind power generation than expected from day ahead forecast, demand response is used in order to minimize the impacts of such wind availability change. In this way, consumers actively participate in regulation up and spinning reserve ancillary services through demand response programs.
Resumo:
The use of Electric Vehicles (EVs) will change significantly the planning and management of power systems in a near future. This paper proposes a real-time tariff strategy for the charge process of the EVs. The main objective is to evaluate the influence of real-time tariffs in the EVs owners’ behaviour and also the impact in load diagram. The paper proposes the energy price variation according to the relation between wind generation and power consumption. The proposed strategy was tested in two different days in the Danish power system. January 31st and August 13th 2013 were selected because of the high quantities of wind generation. The main goal is to evaluate the changes in the EVs charging diagram with the energy price preventing wind curtailment.
Resumo:
This article analyses the painted panels of the moliceiro boat, a traditional working boat of the Ria de Aveiro region of Portugal. The article examines how the painted panels have been invented and reinvented over time. The boat and its panels are contextualized both within the changing socio-economic conditions of the Ria de Aveiro region, and the changing socio-political conditions of Portugal throughout the 20th century and until the present day. The article historically analyses the social significance of ‘moliceiro culture’, examining in particular the power relations it expresses and its ambiguous past and present relationships with the political and the economic powers of the Portuguese state. The article unpacks some of the complexity of the relations that have pertained between public and private, local and national, folk culture and ‘art’, and popular and institutional in the Ria de Aveiro region in particular, and Portugal more generally.
Resumo:
This paper proposes a wind power forecasting methodology based on two methods: direct wind power forecasting and wind speed forecasting in the first phase followed by wind power forecasting using turbines characteristics and the aforementioned wind speed forecast. The proposed forecasting methodology aims to support the operation in the scope of the intraday resources scheduling model, namely with a time horizon of 5 minutes. This intraday model supports distribution network operators in the short-term scheduling problem, in the smart grid context. A case study using a real database of 12 months recorded from a Portuguese wind power farm was used. The results show that the straightforward methodology can be applied in the intraday model with high wind speed and wind power accuracy. The wind power forecast direct method shows better performance than wind power forecast using turbine characteristics and wind speed forecast obtained in first phase.
Resumo:
Catastrophic events, such as wars and terrorist attacks, tornadoes and hurricanes, earthquakes, tsunamis, floods and landslides, are always accompanied by a large number of casualties. The size distribution of these casualties has separately been shown to follow approximate power law (PL) distributions. In this paper, we analyze the statistical distributions of the number of victims of catastrophic phenomena, in particular, terrorism, and find double PL behavior. This means that the data sets are better approximated by two PLs instead of a single one. We plot the PL parameters, corresponding to several events, and observe an interesting pattern in the charts, where the lines that connect each pair of points defining the double PLs are almost parallel to each other. A complementary data analysis is performed by means of the computation of the entropy. The results reveal relationships hidden in the data that may trigger a future comprehensive explanation of this type of phenomena.
Resumo:
Real-time systems demand guaranteed and predictable run-time behaviour in order to ensure that no task has missed its deadline. Over the years we are witnessing an ever increasing demand for functionality enhancements in the embedded real-time systems. Along with the functionalities, the design itself grows more complex. Posed constraints, such as energy consumption, time, and space bounds, also require attention and proper handling. Additionally, efficient scheduling algorithms, as proven through analyses and simulations, often impose requirements that have significant run-time cost, specially in the context of multi-core systems. In order to further investigate the behaviour of such systems to quantify and compare these overheads involved, we have developed the SPARTS, a simulator of a generic embedded real- time device. The tasks in the simulator are described by externally visible parameters (e.g. minimum inter-arrival, sporadicity, WCET, BCET, etc.), rather than the code of the tasks. While our current implementation is primarily focused on our immediate needs in the area of power-aware scheduling, it is designed to be extensible to accommodate different task properties, scheduling algorithms and/or hardware models for the application in wide variety of simulations. The source code of the SPARTS is available for download at [1].
Resumo:
A indústria metalomecânica nacional possui uma larga tradição no fabrico de equipamentos de elevada qualidade nas mais diversas vertentes. Seja em moldes, colunas de geradores de energia eólica, torres de telecomunicações, equipamento para a agropecuária, básculas de camiões ou simplesmente em silos, a indústria metalomecânica portuguesa é reconhecida internacionalmente pela sua competitividade e qualidade. Sectores como o da maquinagem, estampagem e soldadura mantêm viva a economia nacional, exportando produtos e serviços de engenharia que são largamente reconhecidos pelas empresas estrangeiras, tanto na Europa como em África e na América. O sector da construção soldada teve sempre uma forte tradição no nosso país, conhecendo um novo impulso com o fabrico de estruturas metálicas para geradores de energia eólica e torres de telecomunicações. Atualmente esta indústria mantém viva a sua atividade devido a um forte ’know-how’ nesta matéria e a uma qualidade invejável. Apesar do forte ‘know-how’ já existente, esta indústria está constantemente a ser solicitada para novos desafios, passando pela necessidade da aplicação de novos materiais os quais trazem sempre requisitos específicos aos processos, necessitando ser estudados com pormenor. Este estudo baseia-se na necessidade de uma empresa industrial portuguesa precisar de realizar equipamentos em construção soldada com base em aço do tipo Cr-Mo, grau 91, cuja soldadura é tradicionalmente bastante complicada. A realização dos adequados tratamentos ao material, quer antes, quer depois da soldadura, são a garantia de que a qualidade final do produto atinge os níveis exigidos pelos clientes. Assim, o presente estudo, com uma forte componente experimental, permitiu determinar com sucesso quais as melhores condições para o ciclo térmico na soldadura que podem ser aplicadas a esta liga, para que os resultados obtidos possam exibir a qualidade desejada.