25 resultados para Wavelet Packet and Support Vector Machine
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper presents several forecasting methodologies based on the application of Artificial Neural Networks (ANN) and Support Vector Machines (SVM), directed to the prediction of the solar radiance intensity. The methodologies differ from each other by using different information in the training of the methods, i.e, different environmental complementary fields such as the wind speed, temperature, and humidity. Additionally, different ways of considering the data series information have been considered. Sensitivity testing has been performed on all methodologies in order to achieve the best parameterizations for the proposed approaches. Results show that the SVM approach using the exponential Radial Basis Function (eRBF) is capable of achieving the best forecasting results, and in half execution time of the ANN based approaches.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which simulates the electricity markets environment. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated by being included in ALBidS and then compared with the application of an Artificial Neural Network, originating promising results. The proposed approach is tested and validated using real electricity markets data from MIBEL - Iberian market operator.
Resumo:
Wind speed forecasting has been becoming an important field of research to support the electricity industry mainly due to the increasing use of distributed energy sources, largely based on renewable sources. This type of electricity generation is highly dependent on the weather conditions variability, particularly the variability of the wind speed. Therefore, accurate wind power forecasting models are required to the operation and planning of wind plants and power systems. A Support Vector Machines (SVM) model for short-term wind speed is proposed and its performance is evaluated and compared with several artificial neural network (ANN) based approaches. A case study based on a real database regarding 3 years for predicting wind speed at 5 minutes intervals is presented.
Resumo:
Mestrado em Engenharia Informática
Resumo:
Mestrado em Engenharia Informática - Área de Especialização em Arquiteturas, Sistemas e Redes
Resumo:
This document presents particular description of work done during student’s internship in PR Metal company realized as ERASMUS PROJECT at ISEP. All information including company’s description and its structure, overview of the problems and analyzed cases, all stages of projects from concept to conclusion can be found here. Description of work done during the internship is divided here into two pieces. First part concerns one activities of the company which is robotic chefs (kitchen robot) production line. Work, that was done for development of this line involved several tasks, among them: creating a single-worker montage station for screwing robots housing’s parts, improve security system for laser welding chamber, what particularly consists in designing automatically closing door system with special surface, that protects against destructive action of laser beam, test station for examination of durability of heating connectors, solving problem with rotors vibrations. Second part tells about main task, realized in second half of internship and stands a complete description of machine development and design. The machine is a part of car handle latch cable production line and its tasks are: cutting cable to required length and hot-forming plastic cover for further assembly needs.
Resumo:
Designing electric installation projects, demands not only academic knowledge, but also other types of knowledge not easily acquired through traditional instructional methodologies. A lot of additional empirical knowledge is missing and so the academic instruction must be completed with different kinds of knowledge, such as real-life practical examples and simulations. On the other hand, the practical knowledge detained by the most experienced designers is not formalized in such a way that is easily transmitted. In order to overcome these difficulties present in the engineers formation, we are developing an Intelligent Tutoring System (ITS), for training and support concerning the development of electrical installation projects to be used by electrical engineers, technicians and students.
Resumo:
More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.
Resumo:
Quality of life is a concept influenced by social, economic, psychological, spiritual or medical state factors. More specifically, the perceived quality of an individual's daily life is an assessment of their well-being or lack of it. In this context, information technologies may help on the management of services for healthcare of chronic patients such as estimating the patient quality of life and helping the medical staff to take appropriate measures to increase each patient quality of life. This paper describes a Quality of Life estimation system developed using information technologies and the application of data mining algorithms to access the information of clinical data of patients with cancer from Otorhinolaryngology and Head and Neck services of an oncology institution. The system was evaluated with a sample composed of 3013 patients. The results achieved show that there are variables that may be significant predictors for the Quality of Life of the patient: years of smoking (p value 0.049) and size of the tumor (p value < 0.001). In order to assign the variables to the classification of the quality of life the best accuracy was obtained by applying the John Platt's sequential minimal optimization algorithm for training a support vector classifier. In conclusion data mining techniques allow having access to patients additional information helping the physicians to be able to know the quality of life and produce a well-informed clinical decision.
Resumo:
The Internet of Things (IoT) has emerged as a paradigm over the last few years as a result of the tight integration of the computing and the physical world. The requirement of remote sensing makes low-power wireless sensor networks one of the key enabling technologies of IoT. These networks encompass several challenges, especially in communication and networking, due to their inherent constraints of low-power features, deployment in harsh and lossy environments, and limited computing and storage resources. The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) [1] was proposed by the IETF ROLL (Routing Over Low-power Lossy links) working group and is currently adopted as an IETF standard in the RFC 6550 since March 2012. Although RPL greatly satisfied the requirements of low-power and lossy sensor networks, several issues remain open for improvement and specification, in particular with respect to Quality of Service (QoS) guarantees and support for mobility. In this paper, we focus mainly on the RPL routing protocol. We propose some enhancements to the standard specification in order to provide QoS guarantees for static as well as mobile LLNs. For this purpose, we propose OF-FL (Objective Function based on Fuzzy Logic), a new objective function that overcomes the limitations of the standardized objective functions that were designed for RPL by considering important link and node metrics, namely end-to-end delay, number of hops, ETX (Expected transmission count) and LQL (Link Quality Level). In addition, we present the design of Co-RPL, an extension to RPL based on the corona mechanism that supports mobility in order to overcome the problem of slow reactivity to frequent topology changes and thus providing a better quality of service mainly in dynamic networks application. Performance evaluation results show that both OF-FL and Co-RPL allow a great improvement when compared to the standard specification, mainly in terms of packet loss ratio and average network latency. 2015 Elsevier B.V. Al
Resumo:
In an attempt to build a more comprehensive and holistic understanding of the complexity, dynamics and idiosyncrasies involved in becoming a teacher, this study focussed on the experiences of 295 student teachers. Their feelings, cognitions and perceptions regarding teaching practice were analysed using the short version of the Inventory of Experiences and Perceptions of the Teaching Practice. Results emphasise some of the difficulties experienced during this period (e.g., stress, sense of weariness and ‘vulnerability’), as well the positive perceptions of these student teachers regarding their growing knowledge and skilfulness, as well as their sense of efficacy, flexibility and spontaneity in their performance and interactions. Their perception of their accomplishments in achieving reasonable levels of acceptance and recognition within the school community and their positive evaluation of the guidance and support provided by their supervisors are also emphasised. Differences were found – in terms of gender and graduate course background – in the way these student teachers experienced some aspects of teaching practice.
Resumo:
Introdução Actualmente, as mensagens electrónicas são consideradas um importante meio de comunicação. As mensagens electrónicas – vulgarmente conhecidas como emails – são utilizadas fácil e frequentemente para enviar e receber o mais variado tipo de informação. O seu uso tem diversos fins gerando diariamente um grande número de mensagens e, consequentemente um enorme volume de informação. Este grande volume de informação requer uma constante manipulação das mensagens de forma a manter o conjunto organizado. Tipicamente esta manipulação consiste em organizar as mensagens numa taxonomia. A taxonomia adoptada reflecte os interesses e as preferências particulares do utilizador. Motivação A organização manual de emails é uma actividade morosa e que consome tempo. A optimização deste processo através da implementação de um método automático, tende a melhorar a satisfação do utilizador. Cada vez mais existe a necessidade de encontrar novas soluções para a manipulação de conteúdo digital poupando esforços e custos ao utilizador; esta necessidade, concretamente no âmbito da manipulação de emails, motivou a realização deste trabalho. Hipótese O objectivo principal deste projecto consiste em permitir a organização ad-hoc de emails com um esforço reduzido por parte do utilizador. A metodologia proposta visa organizar os emails num conjunto de categorias, disjuntas, que reflectem as preferências do utilizador. A principal finalidade deste processo é produzir uma organização onde as mensagens sejam classificadas em classes apropriadas requerendo o mínimo número esforço possível por parte do utilizador. Para alcançar os objectivos estipulados, este projecto recorre a técnicas de mineração de texto, em especial categorização automática de texto, e aprendizagem activa. Para reduzir a necessidade de inquirir o utilizador – para etiquetar exemplos de acordo com as categorias desejadas – foi utilizado o algoritmo d-confidence. Processo de organização automática de emails O processo de organizar automaticamente emails é desenvolvido em três fases distintas: indexação, classificação e avaliação. Na primeira fase, fase de indexação, os emails passam por um processo transformativo de limpeza que visa essencialmente gerar uma representação dos emails adequada ao processamento automático. A segunda fase é a fase de classificação. Esta fase recorre ao conjunto de dados resultantes da fase anterior para produzir um modelo de classificação, aplicando-o posteriormente a novos emails. Partindo de uma matriz onde são representados emails, termos e os seus respectivos pesos, e um conjunto de exemplos classificados manualmente, um classificador é gerado a partir de um processo de aprendizagem. O classificador obtido é então aplicado ao conjunto de emails e a classificação de todos os emails é alcançada. O processo de classificação é feito com base num classificador de máquinas de vectores de suporte recorrendo ao algoritmo de aprendizagem activa d-confidence. O algoritmo d-confidence tem como objectivo propor ao utilizador os exemplos mais significativos para etiquetagem. Ao identificar os emails com informação mais relevante para o processo de aprendizagem, diminui-se o número de iterações e consequentemente o esforço exigido por parte dos utilizadores. A terceira e última fase é a fase de avaliação. Nesta fase a performance do processo de classificação e a eficiência do algoritmo d-confidence são avaliadas. O método de avaliação adoptado é o método de validação cruzada denominado 10-fold cross validation. Conclusões O processo de organização automática de emails foi desenvolvido com sucesso, a performance do classificador gerado e do algoritmo d-confidence foi relativamente boa. Em média as categorias apresentam taxas de erro relativamente baixas, a não ser as classes mais genéricas. O esforço exigido pelo utilizador foi reduzido, já que com a utilização do algoritmo d-confidence obteve-se uma taxa de erro próxima do valor final, mesmo com um número de casos etiquetados abaixo daquele que é requerido por um método supervisionado. É importante salientar, que além do processo automático de organização de emails, este projecto foi uma excelente oportunidade para adquirir conhecimento consistente sobre mineração de texto e sobre os processos de classificação automática e recuperação de informação. O estudo de áreas tão interessantes despertou novos interesses que consistem em verdadeiros desafios futuros.
Resumo:
This paper is a contribution for the assessment and comparison of magnet properties based on magnetic field characteristics particularly concerning the magnetic induction uniformity in the air gaps. For this aim, a solver was developed and implemented to determine the magnetic field of a magnetic core to be used in Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry. The electromagnetic field computation is based on a 2D finite-element method (FEM) using both the scalar and the vector potential formulation. Results for the magnetic field lines and the magnetic induction vector in the air gap are presented. The target magnetic induction is 0.2 T, which is a typical requirement of the FFC NMR technique, which can be achieved with a magnetic core based on permanent magnets or coils. In addition, this application requires high magnetic induction uniformity. To achieve this goal, a solution including superconducting pieces is analyzed. Results are compared with a different FEM program.